Open Access
Ciência Téc. Vitiv.
Volume 37, Number 1, 2022
Page(s) 39 - 59
Published online 23 May 2022
  • Almeida Santos C. V., Gomes da Silva M., Cabrita M. J., 2020. Impact of SO2 and bentonite addition during fermentation on volatile profile of two varietal white wines. LWT, 133, 109893. [CrossRef] [Google Scholar]
  • Belda I., Ruiz J., Esteban-Fernández A., Navascués, E. Marquina D., Santos A., Moreno-Arribas M., 2017. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules, 22, 189. [CrossRef] [Google Scholar]
  • Bianchi F., Careri M., Mangia A., Musci M., 2007. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Sep. Sci., 30, 563–572. [CrossRef] [Google Scholar]
  • Bindon K., Holt H., Williamson P. O., Varela C., Herderich M., Francis I. L., 2014. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 2. Wine sensory properties and consumer preference. Food Chem., 154, 90–101. [CrossRef] [Google Scholar]
  • Cabrita M. J., Freitas A. M. C., Laureano O., Stefano R. Di., 2006. Glycosidic aroma compounds of some Portuguese grape cultivars. J. Sci. Food Agric., 86, 922–931. [CrossRef] [Google Scholar]
  • Carrascón V., Vallverdú-Queralt A., Meudec E., Sommerer N., Fernandez-Zurbano P., Ferreira, V., 2018. The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition? Food Chem., 241, 206–214. [CrossRef] [Google Scholar]
  • Cheynier V., Basire N., Rigaud, J., 1989. Mechanism of trans-Caffeoyltartaric Acid and Catechin Oxidation in Model Solutions Containing Grape Polyphenoloxidase. J. Agric. Food Chem., 37, 1069–1071. [CrossRef] [Google Scholar]
  • Comuzzo P., Battistutta F., Vendrame M., Páez M. S., Luisi G., Zironi, R., 2015. Antioxidant properties of different products and additives in white wine. Food Chem., 168, 107–114. [CrossRef] [Google Scholar]
  • Comuzzo P., Voce S., Fabris J., Cavallaro A., Zanella G., Karpusas M., Kallithraka S., 2020. Effect of the combined application of heat treatment and proteases on protein stability and volatile composition of Greek white wines. OENO One, 54, 175–188. [CrossRef] [Google Scholar]
  • de-la-Fuente-Blanco A., Sáenz-Navajas M.-P. P., Valentin D., Ferreira V., 2020. Fourteen ethyl esters of wine can be replaced by simpler ester vectors without compromising quality but at the expense of increasing aroma concentration. Food Chem., 307, 125553. [CrossRef] [Google Scholar]
  • Di Mattia C. D., Piva A., Martuscelli, M., Mastrocola D., Sacchetti G. M., 2015. Effect of sulphites on the in vitro antioxidant activity of wines. Italian J. Food Sci., 27(4), 505–512. [Google Scholar]
  • Echave J., Barral M., Fraga-Corral M., Prieto M. A., Simal-Gandara J., 2021. Bottle Aging and Storage of Wines: A Review. Molecules, 26, 713-739. [CrossRef] [PubMed] [Google Scholar]
  • EU-28., 2016. EU-28: Eu Wine Policy Report (No. E16055). Available at: (accessed on 27.06.2019) [Google Scholar]
  • Fernão-Pires M. J., 2018. Vinhos e Aguardentes de Portugal ANUÁRIO 2018. Available at:ário (accessed on 05.01.2021). [Google Scholar]
  • Ferreira I., Freitas F., Pinheiro S., Mourão F., Guido L., Gomes da Silva M., 2022. Impact of temperature during beer storage on beer chemical profile. LWT, 154, 112688. [CrossRef] [Google Scholar]
  • Ferreira I., Carvalho D., Gomes da Silva M., Guido L., 2021. Gas-Diffusion Microextraction (GDME) Combined with Derivatization for Assessing Beer Staling Aldehydes: Validation and Application, Foods, 10, 1704–1718. [CrossRef] [PubMed] [Google Scholar]
  • Fornairon-Bonnefond C., Salmon J. M., 2003. Impact of oxygen consumption by yeast lees on the autolysis phenomenon during simulation of wine aging on lees. J. Agric. Food Chem., 51, 2584–2590. [CrossRef] [PubMed] [Google Scholar]
  • Gambuti A., Picariello L., Rinaldi A., Ugliano M., Moio L., 2020. Impact of 5-year bottle aging under controlled oxygen exposure on sulphur dioxide and phenolic composition of tannin-rich red wines. OENO One, 54, 623–636. [CrossRef] [Google Scholar]
  • Garde-Cerdán T., Marsellés-Fontanet A. R., Arias-Gil M., Ancín-Azpilicueta C., Martín-Belloso O., 2008. Effect of storage conditions on the volatile composition of wines obtained from must stabilized by PEF during ageing without SO2. Inno. Food Sci. & Emerg.Technol., 9, 469–476. [CrossRef] [Google Scholar]
  • Gomes Da Silva M. D. R., Chaves Das Neves H. J., 1997. Differentiation of Strawberry Varieties Through Purge-and-Trap HRGC-MS, HRGC-FTIR and Principal Component Analysis. J. High Resol. Chromatogr., 20, 275–283. [CrossRef] [Google Scholar]
  • Gomes Da Silva M. D. R., Chaves Das Neves H. J., 1999. Complementary Use of Hyphenated Purge-and-Trap Gas Chromatography Techniques and Sensory Analysis in the Aroma Profiling of Strawberries (Fragaria ananassa). J. Agric. Food Chem., 47, 4568–4573. [CrossRef] [PubMed] [Google Scholar]
  • González-Barreiro C., Rial-Otero R., Cancho-Grande B., Simal-Gándara J., 2015. Wine Aroma Compounds in Grapes: A Critical Review. Critical Reviews in Food Sci. Nutri., 55, 202–218. [CrossRef] [PubMed] [Google Scholar]
  • Guerrero, R. F., Cantos-Villar, E., 2015. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends in Food Sci. & Technol., 42, 27–43. [CrossRef] [Google Scholar]
  • Janzantti N. S., Monteiro M., 2017. HS–GC–MS–O analysis and sensory acceptance of passion fruit during maturation. J. Food Sci. Technol., 54, 2594–2601. [CrossRef] [PubMed] [Google Scholar]
  • Kallithraka S., Salacha M. I., Tzourou I., 2009. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem., 113, 500–505. [CrossRef] [Google Scholar]
  • Kong C. L., Li A. H., Su, J., Wang X. C., Chen C. Q., Tao, Y. S., 2019. Flavor modification of dry red wine from Chinese spine grape by mixed fermentation with Pichia fermentans and S. cerevisiae. LWT, 109, 83–92. [CrossRef] [Google Scholar]
  • Manzocco L., Mastrocola D., Nicoli M. C., 1998. Chain-breaking and oxygen scavenging properties of wine as affected by some technological procedures. Food Res. Int., 31(9), 673–678. [CrossRef] [Google Scholar]
  • Mateus E., Barata R. C., Zrostlíková J., Gomes da Silva M. G. R., Paiva M. R., 2010. Characterization of the volatile fraction emitted by Pinus spp. By one- and two-dimensional chromatographic techniques with mass spectrometric detection. J. Chromatogr. A, 1217, 1845–1855. [CrossRef] [Google Scholar]
  • OIV., 2018. Compendium of International Methods of Analysis of Wines and Musts (2 vol.). In OIV. Available at: (accessed on 15.08.2018) [Google Scholar]
  • Oliveira J. M., Oliveira P., Baumes R. L., Maia O., 2008. Changes in aromatic characteristics of Loureiro and Alvarinho wines during maturation. J. Food Comp. Anal., 21, 695–707. [CrossRef] [Google Scholar]
  • Oliveira C. M., Ferreira A. C. S., De Freitas V., Silva A. M. S., 2011. Oxidation mechanisms occurring in wines. Food Res. Int., 44, 1115–1126. [CrossRef] [Google Scholar]
  • Pati S., Crupi P., Benucci I., Antonacci D., Di Luccia A., Esti M., 2014. HPLC-DAD-MS/MS characterization of phenolic compounds in white wine stored without added sulphite. Food Res. Int., 66, 207–215. [CrossRef] [Google Scholar]
  • Pereira C., Mendes D., Dias T., Garcia R., da Silva M. G., Cabrita M. J., 2021. Revealing the yeast modulation potential on amino acid composition and volatile profile of ‘Arinto’ white wines by a combined chromatographic-based approach. J. Chromatogr. A, 1641, 461991. [CrossRef] [Google Scholar]
  • Petronilho S., Lopez R., Ferreira V., Coimbra M. A., Rocha S. M., 2020. Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Molecules, 25, 272–289. [CrossRef] [Google Scholar]
  • Piras S., Brazão J., Jorge M. Ricardo-da-Silva J. M., Anjos O., Caldeira I., 2020. Volatile and Sensory Characterization of White Wines from Three Minority Portuguese Grapevine Varieties. Ciência Téc. Vitiv., 35, 49–62. [CrossRef] [EDP Sciences] [Google Scholar]
  • Roberts A. C., McWeeny D. J., 1972. The uses of sulphur dioxide in the food industry: A review. Int. J. Food Sci. & Technol., 7, 221–238. [Google Scholar]
  • Sacks G. L., Howe P. A., Standing M., Danilewicz J. C., 2020. Free, bound, and total sulphur dioxide (SO2) during oxidation of wines. Am. J. Enol. Viti., 71(4), 266–277. [CrossRef] [Google Scholar]
  • Saracino F., Brinco J., Gago D., Gomes da Silva M., Ferreira R., Ricardo-da-Silva J., Chagas R., Ferreira L., 2021. DCMC as a Promising Alternative to Bentonite in White Wine Stabilization. Impact on Protein Stability and Wine Aromatic Fraction, Molecules, 26, 6188. [CrossRef] [PubMed] [Google Scholar]
  • Stockley C., Paschke-Kratzin A., Teissedre P.-L., Restani P., Tejedor N. G., Quini C., 2021. Oiv collective expertise document SO2 and wine: a review 1 march 2021 SO2 and wine: a review. Available at: (accessed on 24.05.2021) [Google Scholar]
  • Styger G., Prior B., Bauer F. F., 2011. Wine flavor and aroma. J. Ind. Micro. & Biotech., 38, 1145–1159. [CrossRef] [PubMed] [Google Scholar]
  • Vally H., Misso N. L. A. A., Madan V., 2009. Clinical effects of sulphite additives. Clin. Exp. Allergy, 39(11), 1643–1651. [CrossRef] [Google Scholar]
  • Vincenzi S., Panighel A., Gazzola D., Flamini R., Curioni A., 2015. Study of Combined Effect of Proteins and Bentonite Fining on the Wine Aroma Loss. J. Agric. Food Chem., 63, 2314–2320. [CrossRef] [PubMed] [Google Scholar]
  • Wang X., Tao Y., Wu Y., An R., Yue Z., 2017. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Food Chem., 226, 41–50. [CrossRef] [Google Scholar]
  • Waterhouse A. L., Laurie V. F., 2006. Oxidation of Wine Phenolics: A Critical Evaluation and Hypotheses Andrew. Am. J. Enol. Viti., 57, 306–313. [Google Scholar]
  • Zhang J. B., Zhang H., Wang H. L., Zhang J. Y., Luo P. J., Zhu L., Wang Z. T., 2014. Risk analysis of sulphites used as food additives in China. Biomed. Environ. Sci., 27(2), 147–15. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.