Open Access
Issue
Ciência Téc. Vitiv.
Volume 36, Number 1, 2021
Page(s) 45 - 54
DOI https://doi.org/10.1051/ctv/ctv2021360145
Published online 05 May 2021
  • Canas I., Martin-Ocaña S., 2005. Study of the thermal behaviour of traditional wine cellars: the case of the area of “Tierras Sorianas del Cid” (Spain). Renew. Energy, 30, 43-55. [Google Scholar]
  • Centeno P., Alexandre M.F., Chapa M., Pinto J.V., Deuermeier J., Mateus T., Fortunato E., Martins R., Águas H., Mendes M.J., 2020. Self‐cleaned photonic‐enhanced solar cells with nanostructured parylene‐C. Adv. Mater. Interfaces, 7, 2070084. [Google Scholar]
  • Cooperativas Agro-Alimentarias, 2011. Manual de ahorro y eficiencia energética del sector. Bodegas (Manual of saving and energy efficiency of the sector. Wineries). Available at: http://www.agro-alimentarias.coop/ficheros/doc/03200.pdf (accessed on 23.03.2021). [Google Scholar]
  • Cooperativas Agro-Alimentarias, 2016. TESLA. Final results oriented report. Available at: http://www.agro-alimentarias.coop/ficheros/doc/04881.pdf (accessed on 23.03.2021). [Google Scholar]
  • Enrichi F., Righini G.C., 2019. Solar cells and light management: Materials, strategies and sustainability. 556 p. Elsevier, Amsterdam. [Google Scholar]
  • European Commission, 2019. Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. Available at: https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-01/JRC118627_FDM_Bref_2019_published.pdf (accessed on 23.03.2021). [Google Scholar]
  • European Commission, 2020a. 2030 climate & energy framework - Policy and documentation. Available at: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 23.03.2021). [Google Scholar]
  • European Commission, 2020b. Wine: overview. Available at: https://ec.europa.eu/info/food-farming-fisheries/plants-and-plant-products/plant-products/wine_en (accessed on 23.03.2021). [Google Scholar]
  • Fuentes-Pila J., García J.L., 2014. Handbook: Efficient wineries TESLA project deliverable D.6.6: European Commission. Available at: https://teslaproject.chil.me/download-doc/62556 (accessed on 23.03.2021). [Google Scholar]
  • Gómez-Lorente D., Rabaza O., Aznar-Dols F., Mercado-Vargas M.J., 2017. Economic and environmental study of wineries powered by grid-connected photovoltaic systems in Spain. Energies, 10, 222-235. [Google Scholar]
  • Kavlak G., McNerney J., Trancik J.E., 2018. Evaluating the causes of cost reduction in photovoltaic modules. Energy policy, 123, 700–710 [Google Scholar]
  • Latini A., Giagnacovo G., Campiotti C.A., 2018. Experiences from pilot clusters. Available at: https://scoope.eu/wp-content/uploads/2018/11/D4_6_Experiences-from-pilotclusters_v5_finale_171018_versionWEB.pdf (accessed on 23.03.2021) [Google Scholar]
  • Lourenço A.C., Reis-Machado A.S., Fortunato E., Martins R., Mendes M.J., 2020. Sunlight-driven CO2-to-fuel conversion: Exploring thermal and electrical coupling between photovoltaic and electrochemical systems for optimum solar-methane production. Mater. Today Energy, 17, 100425. [Google Scholar]
  • Mazarrón F.R., Cid-Falceto J., Canas-Guerrero I., 2012. Assessment of aboveground winery buildings for the aging and conservation of wine. Appl. Eng. in Agric., 28, 903-910. [Google Scholar]
  • Mazarrón F.R., Lopez-Ocon E., Garcimartín M.A., Canas I., 2013. Assessment of basement constructions in the winery industry. Tunn. Undergr. Sp. Tech., 35, 200-206. [Google Scholar]
  • Mekhilef S., Faramarzi S.Z., Saidur R., Salam Z., 2013. The application of solar technologies for sustainable development of agricultural sector. Renewable Sustainable Energy Rev., 18, 583-594. [Google Scholar]
  • Mendes M.J., Sanchez-Sobrado O., Haque S., Mateus T., Águas H., Fortunato E., Martins R., 2020. Wave-optical front structures on silicon and perovskite thin-film solar cells. In: Solar cells and light management. 315-354. Elsevier, Amsterdam. [Google Scholar]
  • Ministerio de Industria y Energía, 1981. Radiación solar sobre superficies inclinadas (Solar radiation on inclined surfaces). 323 p. Centro de Estudios de la Energía, Madrid. [Google Scholar]
  • Services Coop de France, 2017. SCOoPE (Saving Cooperative Energy). Existing cost effective solutions. Available at: https://scoope.eu/wp-content/uploads/2017/10/D5-2_WP5_ECS_2017-09-29_SUBMITTED.pdf (accessed on 23.03.2021). [Google Scholar]
  • Smyth M., Russell J., 2009. ‘From graft to bottle’-Analysis of energy use in viticulture and wine production and the potential for solar renewable technologies. Renew. Sust. Energ. Rev., 13, 1985-1993. [Google Scholar]
  • Vela R., Ruiz-Mazarrón F., Fuentes-Pila J., Baptista, F., Silva, L.L., García, J.L., 2017. Improved energy efficiency in wineries using data from audits. Ciência Tec. Vitiv., 32, 62-71. [Google Scholar]
  • Vieira F., Sarmento B., Reis-Machado A.S., Facão J., Carvalho M.J., Mendes M.J., Fortunato E., Martins R., 2019. Prediction of sunlight-driven CO2 conversion: Producing methane from photovoltaics, and full system design for single-house application. Mater. Today Energy, 14, 100333. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.