Open Access
Issue
Ciência Téc. Vitiv.
Volume 35, Number 2, 2020
Page(s) 76 - 106
DOI https://doi.org/10.1051/ctv/20203502076
Published online 07 September 2020
  • Agenis-Nevers M., 2006. Impacts du changement climatique sur les activités viti-vinicoles. Observatoire National sur les Effects du Réchauffement Climatique (ONERC), Report Nº 3, Paris. [Google Scholar]
  • Bailly S., Jerkovic V., Marchand-Brynaert J., Collin S., 2006. Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols. J. Agric. Food Chem., 54, 7227-7234. [CrossRef] [PubMed] [Google Scholar]
  • Bailly S., Jerkovic V., Meurée A., Timmermans A., Collin S., 2009. Fate of key odorants in Sauternes wines through aging. J. Agric. Food Chem., 57, 8557-8563. [CrossRef] [PubMed] [Google Scholar]
  • Banerjee N., Bhatnagar R., Viswanathan L., 1981. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. European J. Appl. Microbiol. Biotechnol., 11, 226-228. [CrossRef] [Google Scholar]
  • Barbe J-C., De Revel G., Joyeux A., Lonvaud-Funel A., Bertrand A., 2000. Role of carbonyl compounds in SO2 binding phenomena in musts and wines from botrytized grapes. J. Agric. Food Chem., 48, 3413-3419. [CrossRef] [PubMed] [Google Scholar]
  • Barbe J.-C., De Revel G., Joyeux A., Bertrand A., Lonvaud-Funel A., 2001. Role of botrytized grape micro-organisms in SO2 binding phenomena. J. Appl. Microbiol., 90, 34-42. [Google Scholar]
  • Bauza T., Blaise A., Daumas F., Cabanis J.C., 1995. Determination of biogenic amines and their precursor amino acids in wines of the Vallée du Rhône by high-performance liquid chromatography with precolumn derivatization and fluorimetric detection. J. Chromatogr. A, 707, 373-379. [Google Scholar]
  • Bely M., Rinaldi A., Dubourdieu D., 2003. Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J. Biosci. Bioeng., 96, 507–512. [CrossRef] [Google Scholar]
  • Bely M., Stoeckle P., Masneuf-Pomarède I., Dubourdieu D., 2008. Impact of mixed Torulaspora delbrueckii – Saccharomyces cerevisiae culture on high-sugar fermentation. Int. J. Food Microbiol., 122, 312-320. [CrossRef] [PubMed] [Google Scholar]
  • Bisson L.F., 1999. Stuck and sluggish fermentations. Am. J. Enol. Vitic., 50, 107-119. [Google Scholar]
  • Blanco-Ulate B., Amrine K.C.H., Collins T.S., Rivero R.M., Vicente A.R., Morales-Cruz A., Doyle C.L., Ye Z., Allen G., Heymann H., Ebeler S.E., Cantu D., 2015. Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot. J. Plant Physiol., 169, 2422-2443. [Google Scholar]
  • Bock G., Benda I., Schreier P., 1988. Microbial transformation of geraniol and nerol by Botrytis cinerea. Appl. Microbiol. Biotechnol., 27, 351-357. [Google Scholar]
  • Bonnefoy C., Quénol H., Barbeau G., Madelin M., 2010. Analyse climatique à l’échelle des Coteaux du Layon. In: VIII International Terroir Congress. 109-114. Soave. [Google Scholar]
  • Boulton R.B., Singleton V.L., Bisson L.F., Kunkee R.E., 1999. Principles and practices of winemaking. 604 p. Springer, Boston. [Google Scholar]
  • Carbajal-Ida D., Maury C., Salas E., Siret R., Mehinagic E., 2016. Physico-chemical properties of botrytized Chenin Blanc grapes to assess the extent of noble rot. Eur. Food Res Technol., 242, 117-126. [Google Scholar]
  • Carbonneau A., Casteran P., 1986. Essai de systèmes de conduite de la vigne pour la production de raisins « pourris nobles » en bordelais. Connaiss. Vigne Vin, 20, 17-38. [Google Scholar]
  • Carrascosa A.V., Muñoz R., González R., 2011. Molecular wine microbiology. 363 p. Academic Press, London. [Google Scholar]
  • Chen J.Y., Wen P.F., Kong W.F., Pan Q.H., Wan S.B., Huang W.D., 2006. Changes and subcellular localizations of the enzymes involved in phenylpropanoid metabolism during grape berry development. J. Plant Physiol., 163, 115-127. [CrossRef] [PubMed] [Google Scholar]
  • Ciani M., Ferraro, L., 1996. Enhanced glycerol content in wines made with immobilized Candida stellata cells. Appl. Environ. Microbiol., 62, 128-132. [Google Scholar]
  • Ciani M., Ferraro L., 1998. Combined use of immobilized Candida stellata cells and Saccharomyces cerevisiae to improve the quality of wines. J. Appl. Microbiol., 85, 247-254. [Google Scholar]
  • Ciani M., Ferraro L., Fatichenti F., 2000. Influence of glycerol production on the aerobic and anaerobic growth of the wine yeast Candida stellata. Enzyme Microb. Technol., 27, 698-703. [CrossRef] [PubMed] [Google Scholar]
  • Cichewicz R.H., Kouzi S.A., Hamann M.T., 2000. Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea. J. Nat. Prod., 63, 29-33. [CrossRef] [PubMed] [Google Scholar]
  • Cooke R.C., Capone D.L., van Leeuwen K.A., Elsey G.M., Sefton M.A., 2009. Quantification of several 4-alkyl substituted γ-lactones in Australian wines. J. Agric. Food Chem., 57, 348-352. [CrossRef] [PubMed] [Google Scholar]
  • Csomós E., Simon-Sarkadi L., 2002. Characterisation of Tokaj wines based on free amino acids and biogenic amines using ionexchange chromatography. Chromatographia, 56, 185-188. [Google Scholar]
  • Cuadrado M.U., Pérez-Juan P.M., Castro M.D.L., Gómez-Nieto M.A., 2005. A fully automated method for in real time determination of laccase activity in wines. Anal. Chim. Acta, 553, 99-104. [Google Scholar]
  • Divol B., Strehaiano P., Lonvaud-Funel A., 2005. Effectiveness of dimethyldicarbonate to stop alcoholic fermentation in wine. Food Microbiol., 22, 169-178. [Google Scholar]
  • Donèche B., 1989. Carbohydrate metabolism and gluconic acid synthesis by Botrytis cinerea. Can. J. Bot., 67, 2888-2893. [Google Scholar]
  • Donèche B., 1991. Influence des sucres sur la laccase de Botrytis cinerea dans le cas de la pourriture noble du raisin. J. Int. Sci. Vigne Vin, 25, 111-115. [Google Scholar]
  • Dubernet M., Ribéreau-Gayon P., Lerner H.R., Harel E., Mayer A.M., 1977. Purification and properties of laccase from Botrytis cinerea. Phytochemistry, 16, 191-193. [Google Scholar]
  • Dubourdieu D., Villettaz J.C., Desplanques C., Ribéreau-Gayon P., 1981. Dégradation enzymatique du glucane de Botrytis cinerea application à l’amélioration de la clarification des vins issus de raisins pourris. Connaiss. Vigne Vin, 15, 161-177. [Google Scholar]
  • EEC, 2006. Regulation (EEC) No 1881/2006 of 19-12-2006, Official Journal of the European Union, 20 December 2006. [Google Scholar]
  • EEC, 2009. Regulation (EEC) No 606/2009 of 10-07-2009, Official Journal of the European Union, 24 July 2009. [Google Scholar]
  • EEC, 2013. Regulation (EEC) No 1308/2013of 17-12-2013, Official Journal of the European Union, 20 December 2013. [Google Scholar]
  • EEC, 2019. Regulation (EEC) No 2019/934 of 12-03-2019, Official Journal of the European Union, 07 June 2019. [Google Scholar]
  • Fedrizzi B., Tosi E., Simonato B., Finato F., Cipriani M., Caramia G., Zapparoli G., 2011. Changes in wine aroma composition according to botrytized berry percentage: A preliminary study on Amarone wine. Food Technol. Biotechnol., 49, 529-535. [Google Scholar]
  • Ferreira B., Hory C., Bard M.H., Taisant C., Olsson A., Le Fur Y,. 1995. Effects of skin contact and settling on the level of the C18:2, C18:3 fatty acids and C6 compounds in Burgundy Chardonnay musts and wines. Food Qual. Prefer., 6, 35-41. [Google Scholar]
  • Ferreira A.C.S, Barbe J-C., Bertrand A., 2003. 3-Hydroxy-4,5-dimethyl-2(5H)-furanone: A key odorant of the typical aroma of oxidative aged Port wine. J. Agric. Food Chem., 51, 4356-4363. [CrossRef] [PubMed] [Google Scholar]
  • Fournier E., Gladieux P., Giraud T., 2013. The “Dr Jekyll and Mr Hyde fungus”: Noble rot versus gray mold symptoms of Botrytis cinerea on grapes. Evol. Appl., 6, 960-969. [CrossRef] [PubMed] [Google Scholar]
  • Frankel E.N., Kanner J., German J.B., Parks E., Kinsella J.E., 1993. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet, 341, 454-457. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Jares C.M., Médina B., 1997. Application of multivariate calibration to the simultaneous routine determination of ethanol, glycerol, fructose, glucose and total residual sugars in botrytizedgrape sweet wines by means of near-infrared reflectance spectroscopy. Fresen. J. Anal. Chem., 357, 86-91. [CrossRef] [Google Scholar]
  • Girbau T., Stummer B.E., Pocock K.F., Baldock G.A., Scott E.S., Waters E.J., 2004. The effect of Uncinula necator (powdery mildew) and Botrytis cinerea infection of grapes on the levels of haze-forming pathogenesis-related proteins in grape juice and wine. Aust. J. Grape Wine R., 10, 125-133. [CrossRef] [Google Scholar]
  • Goetghebeur M., Brun S., Galzy P., Nicolas M., 1993. Benzyl alcohol oxidase and laccase synthesis in Botrytis cinerea. Biosci. Biotech. Bioch., 57, 1380-1381. [CrossRef] [Google Scholar]
  • Goetz G., Fkyerat A., Métais N., Kunz M., Tabacchi R., Pezet R., Pont V., 1999. Resistance factors to gray mold in grape berries: Identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase. Phytochemistry, 52, 759-767. [Google Scholar]
  • González-Álvarez M., Noguerol-Pato R., González-Barreiro C., Cancho-Grande B., Simal-Gándara J., 2014. Sensory description of sweet wines obtained by the winemaking procedures of raisining, botrytization and fortification. Food Chem., 145, 1021-1030. [PubMed] [Google Scholar]
  • Hajós G., Sass-Kiss A., Szerdahelyi E,. Bardocz S., 2000. Changes in biogenic amine content of Tokaj grapes, wines, and Aszu-wines. J. Food Sci., 65, 1142-1144. [Google Scholar]
  • Hart J.H., 1981. Role of phytostilbenes in decay and disease resistance. Ann. Rev. Phytopathol., 19, 437-458. [CrossRef] [Google Scholar]
  • Jackson R.S., 2008. Wine science principles and applications. 751 p. Academic Press, Burlington. [Google Scholar]
  • Jang M., Cai L., Udeani G.O., Slowing K.V., Cathy F.T., Beecher C.W.W., Fong H.H.S., Farnsworth N.R., Kinghorn A.D., Mehta R.G., Moon R.C., Pezzuto J.M., 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Sience, 275, 218-220. [CrossRef] [PubMed] [Google Scholar]
  • Joyeux A., Lafon-Lafourcade S., Ribéreau-Gayon P., 1984. Evolution of acetic acid bacteria during fermentation and storage of wine. Appl. Environ. Microbiol., 48, 153-156. [PubMed] [Google Scholar]
  • Kamoen O., 1992. Botrytis cinerea: Host-pahtogen interactions’, In: 10th International Botrytis symposium. 39-47. Wageningen. [Google Scholar]
  • Keller M., 2015. The science of grapevines. Anatomy and physiology. 509 p. Academic Press, London. [Google Scholar]
  • Kikuchi T., Kadota S., Suehara H., Nishi A., Tsubaki K., Yano H., Harumaya K., 1983. Odorous metabolites of fungi, Chaetomium globosum Kinze ex Fr. and Botrytis cinerea Pers. ex Fr., and a blue-green alga, Phormidium tenue (Meneghini) Gomont. Chem. Pharm. Bull., 34, 659-663. [Google Scholar]
  • Kiss J., Sass-Kiss A., 2005. Protection of originality of Tokaji Aszú: Amines and organic acids in botrytized wines by highperformance liquid chromatography. J. Agric. Food Chem., 53, 10042-10050. [CrossRef] [PubMed] [Google Scholar]
  • König H., Unden G., Fröhlich J., 2017. Biology of microorganisms on grapes, in must and in wine. 710 p. Springer, Cham. [Google Scholar]
  • Lafon-Lafourcade S., Ribéreau-Gayon P., 1979. Quelques observations sur les problèmes microbiologiques de la vinification en blanc. Connaiss. Vigne Vin, 33, 52-76. [Google Scholar]
  • Landrault N., Larronde F., Delaunay J.-C, Castagnino C., Vercauteren J., Merillon J.-M., Gasc F., Cros G., Teissedre P.-L., 2002. Levels of stilbene oligomers and astilbin in French varietal wines and in grapes during noble rot development. J. Agric. Food Chem., 50, 2046-2052. [CrossRef] [PubMed] [Google Scholar]
  • Lorenzini M., Azzolini M., Tosi E., Zapparoli G., 2012. Postharvest grape infection of Botrytis cinerea and its interactions with other molds under withering conditions to produce noblerotten grapes. J. Appl. Microbiol., 114, 762-770. [Google Scholar]
  • Lorenzini M., Millioni R., Franchin C., Zapparoli G., Arrigoni G., Simonato B., 2015. Identification of potential protein markers of noble rot infected grapes. Food Chem., 179, 170-174. [PubMed] [Google Scholar]
  • Lovato A., Zenoni S., Tornielli G.B., Colombo T., Vandelle E., Polverari A., 2019. Specific molecular interactions between Vitis Vinifera and Botrytis cinerea are required for noble rot development in grape berries. Postharvest Biol. Tec., 156, 1-15. [CrossRef] [Google Scholar]
  • Magyar I., 2011. Botrytized Wines. In: Advances in Food and Nutrition Research, Volume 63. 147-206. Jackson R.S. (ed.), Academic Press, Burlington. [Google Scholar]
  • Magyar I., Tóth T., 2011. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol., 28, 94-100. [CrossRef] [PubMed] [Google Scholar]
  • Marchal R., Warchol M., Cilindre C., Jeandet P., 2006. Evidence for protein degradation by Botrytis cinerea and relationships with alteration of synthetic wine foaming properties. J. Agr. Food Chem., 54, 5157-5165. [CrossRef] [Google Scholar]
  • Masneuf I., Dubourdieu D., 2000. Rôle de la souche de levure sur les combinaisons du dioxyde de soufre des vins issus de raisins botrytisés et passerillés. J. Int. Sci. Vigne Vin, 34, 27-31. [Google Scholar]
  • Masuda M., Okawa E.-I-C., Nishimura K.-I-C., Yunome H., 1984. Identification of 4,5-dimethil-3-hydroxy-2(5H)- furanone (sotolon) and ethyl 9-hydroxynonanoate in botrytized wine and evaluation of the roles of compounds characteristic of it. Agric. Biol. Chem., 48, 2707-2710. [Google Scholar]
  • Mateo R., Medina Á., Mateo E.M., Mateo F., Jiménez M., 2007. An overview of ochratoxin A in beer and wine. Int. J. Food. Microbiol., 119, 79-83. [CrossRef] [Google Scholar]
  • Miklósy É., Kalmár Z., Kerényi Z., 2004. Identification of some characteristic aroma compounds in noble rotted grape berries and Aszú wines from Tokaj by GC-MS. Acta Aliment., 33, 215-226. [CrossRef] [Google Scholar]
  • Miklósy É., Kerényi Z., 2004. Comparison of the volatile aroma components in noble rotted grape berries from two different locations of the Tokaj wine district in Hungary. Anal. Chim. Acta, 513, 177-181. [Google Scholar]
  • Mills D.A., Johannsen E.A., Cocolin L., 2002. Yeast diversity and persistence in Botrytis-affected wine fermentations. Appl. Environ. Microbiol., 68, 4884-4893. [Google Scholar]
  • Moreno-Arribas M.V., Polo M.C., 2009. Wine chemistry and biochemistry. 735 p. Springer, New York. [Google Scholar]
  • Moreno J., Peinado R., 2012. Enological chemistry. 429 p. Academic Press, London. [Google Scholar]
  • Negri S., Lovato A., Boscaini F., Salvetti E., Torriani S., Commisso M., Danzi R., Ugliano M., Polverari A., Tornielli G.B., Guzzo F., 2017. The induction of noble rot (Botrytis cinerea) infection during postharvest withering changes the metabolome of grapevine berries (Vitis Vinifera L., cv. Garganega). Front. Plant Sci., 8, 1-12. [CrossRef] [PubMed] [Google Scholar]
  • OIV, 2020. International code of oenological practices. 427 p. International Organisation of Vine and Wine, Paris. [Google Scholar]
  • Pittari E., Catarino S., Andrade M.C., Ricardo-da-Silva JM., 2018. Preliminary results on tartaric stabilization of red wine by adding different carboxymethylcelluloses. Ciência Téc. Vitiv., 33, 47-57. [CrossRef] [Google Scholar]
  • Pucheu-Planté B., Seguin G., 1978. Pourriture vulgaire et pourriture noble en Bordelais. Connaiss. Vigne Vin, 12, 21-34. [Google Scholar]
  • Pucheu-Planté B., Seguin G., 1981. Influence des facteurs naturels sur la maturation et la surmaturation du raisin dans le Sauternais, en 1978 et 1979. Connaiss. Vigne Vin, 15, 143-160. [Google Scholar]
  • Pucheu-Planté B., Mercier M., 1983. Etude ultrastructurale de l’interrelation hôte-parasite entre le raisin et le champignon Botrytis cinerea: Exemple de la pourriture noble en Sauternais. Can. J. Bot., 61, 1785-1797. [Google Scholar]
  • Purchase I.F.H., Theron J.J., 1968. The acute toxicity of Ochratoxin A to rats. Food Chem. Toxicol., 6, 479-483. [PubMed] [Google Scholar]
  • Quideau S., Feldman K.S., Appel H.M., 1995. Chemistry of galloyl-derived ο-quinones: Reactivity toward nucleophiles. J. Org. Chem., 60, 4982-4983. [Google Scholar]
  • Rantsiou K., Dolci P., Giacosa S., Torchio F., Tofalo R., Torriani S., Suzzi G., Rolle L., Cocolin L., 2012. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl. Environ. Microbiol., 78, 1987-1994. [Google Scholar]
  • Ravji G.R., Rodriguez S.B., Thornton R.J., 1988. Glycerol production by four common grape molds. Am. J. Enol. Vitic., 39, 77-82. [Google Scholar]
  • Reynolds A.G., 2010. Managing wine quality. Volume 2: Oenology and wine quality. 651 p. Woodhead Publishing Limited, Cambridge. [Google Scholar]
  • Ribéreau-Gayon P., 1982. Incidences oenologiques de la pourriture du raisin. Bull. OEPP, 12, 201-214. [Google Scholar]
  • Ribéreau-Gayon P., Dubourdieu D., Donèche B., Lonvaud A., 2006a. Handbook of Enology. Volume 1: The microbiology of wine and vinifications 2nd edition. 497 p. John Wiley & Sons, Chichester. [Google Scholar]
  • Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D., 2006b. Handbook of enology. Volume 2: The chemistry of wine stabilization and treatments 2nd edition. 441 p. John Wiley & Sons, Chichester. [Google Scholar]
  • Rolle L., Giordano M., Giacosa S., Vincenzi S., Segade S.R., Torchio F., Perrone B., Gerbi V., 2012. CIEL*a*b* parameters of white dehydrated grapes as quality markers according to chemical composition, volatile profile and mechanical properties. Anal. Chim. Acta, 732, 105-113. [CrossRef] [PubMed] [Google Scholar]
  • Rousseau S., Donèche B., 2001. Effects of water activity (aw) on the growth of some epiphytic micro-organisms isolated from grape berry. Vitis, 40, 75-78. [Google Scholar]
  • Salgues M., Cheynier V., Gunata Z., Wylde R., 1986. Oxidation of grape juice 2-S-glutathionyl caffeoyl tartaric acid by Botrytis cinerea laccase and characterization of a new substance : 2, 5 - di –S - GlutathionyI caffeoyl tartaric acid. J. Food Sci., 51, 1191-1194. [Google Scholar]
  • Sarrazin E., Dubourdieu D., Darriet P., 2007. Characterization of key-aroma compounds of botrytized wines, influence of grape botrytization. Food Chem., 103, 536-545. [Google Scholar]
  • Sarrazin E., Shinkaruk S., Tominaga T., Bennetau B., Frérot E., Dubourdieu D., 2007. Odorous impact of volatile thiols on the aroma of young botrytized sweet wines: Identification and quantification of new sulfanyl alcohols. J. Agric. Food Chem., 55, 1437-1444. [CrossRef] [PubMed] [Google Scholar]
  • Sarrazin E., 2008. Recherches sur l’arôme des vins liquoreux de pourriture noble issus des cépages Sémillon et Sauvignon Blanc. Caractérisation de composés clés et étude de leur genèse. In: Grand Prix de L’Académie Amorim. Paris. [Google Scholar]
  • Sarrazin E., Shinkaruk S., Pons M., Thibon C., Bennetau B., Darriet P., 2010. Elucidation of the 1,3-sulfanylalcohol oxidation mechanism: An unusual identification of the disulfide of 3-sulfanylhexanol in Sauternes botrytized wines. J. Agric. Food Chem., 58, 10606-10613. [CrossRef] [PubMed] [Google Scholar]
  • Sass-Kiss A., Szerdahelyi E., Haj., 2000. Study of biologically active amines in grapes and wines by HPLC. Chromatographia, 51, 316-320. [Google Scholar]
  • Serrano-Ruiz J.C., Campelo J.M., Francavilla M., Romero A..A, Luque R., Menéndez-Vázquez C., García A.B., García-Suárez E.J., 2012. Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Brönsted acidic ionic liquids. Catal. Sci. Technol., 2, 1828-1832. [Google Scholar]
  • Sipiczki M., 2004. Species identification and comparative molecular and physiological analysis of Candida zemplinina and Candida stellata. J. Basic. Microbiol., 44, 471-479. [CrossRef] [PubMed] [Google Scholar]
  • Soden A., Francis I.L., Oakey H., Henschke P.A., 2000. Effects of co-fermentation with Candida stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine. Aust. J. Grape Wine R., 6, 21-30. [CrossRef] [Google Scholar]
  • Stamatopoulos P., Frérot E., Tempère S., Pons A., Darriet P., 2015. Contribution à l’étude de l’arôme de fruits confits dans les vins liquoreux de pourriture noble. Mise en évidence d’un « accord aromatique » impliquant des composés clés. Rev. OEnologues, 156, 49-52. [Google Scholar]
  • Sudraud P., Chauvet S., 1985. Activité antilevure de l’anhydride sulfureux moléculaire. Connaiss. Vigne Vin, 19, 31-40. [Google Scholar]
  • Swiegers, J.H., Bartowsky E.J., Henschke P.A., Pretorius I.S., 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine R., 11, 139-173 [CrossRef] [Google Scholar]
  • Thakur N.S., 2018. Botrytized wines: A review. Intl. J. Food Ferment. Technol., 8, 1-13. [Google Scholar]
  • Thibon C., Dubourdieu D., Darriet P., Tominaga T., 2009. Impact of noble rot on the aroma precursor of 3-sulfanylhexanol content in Vitis Vinifera L. cv Sauvignon Blanc and Semillon grape juice. Food Chem., 114, 1359-1364. [Google Scholar]
  • Tominaga T., Niclass Y., Frérot E., Dubourdieu D., 2006. Stereoisomeric distribution of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in dry and sweet white wines made from Vitis Vinifera (var. Sauvignon Blanc and Semillon). J. Agr. Food Chem., 54, 7251-7255. [CrossRef] [Google Scholar]
  • Tosi E., Fedrizzi B., Azzolini M., Finato F., Simonato B., Zapparoli G., 2012. Effects of noble rot on must composition and aroma profile of Amarone wine produced by the traditional grape withering protocol. Food Chem., 130, 370-375. [Google Scholar]
  • Tóth-Markus M., Magyar I., Kardos K., Bánszky L., Maráz A., 2002. Study of Tokaji Aszú wine flavour by solid phase microextraction method. Acta Aliment., 31, 343-354. [CrossRef] [Google Scholar]
  • Valero A., Marín S., Ramos A.J., Sanchis V., 2008. Survey: Ochratoxin A in European special wines. Food Chem., 108, 593-599. [PubMed] [Google Scholar]
  • Vignault A., Gombau J., Jourdes M, Moine V., Canals J.M., Fermaud M., Roudet J., Zamora F., Teissedre P.-L., 2020. Oenological tannins to prevent Botrytis cinerea damage in grapes and musts: Kinetics and electrophoresis characterization of laccase. Food Chem., 316, 1-9. [Google Scholar]
  • Walker A.S., Gautier A., Confais J., Martinho D., Viaud M., Pêcheur P., Dupont J., Fournier E., 2011. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology, 101, 1433-1445. [CrossRef] [PubMed] [Google Scholar]
  • Wang X., Tao Y., Wu Y., An R., Yue Z., 2017. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Food Chem., 226, 41-50. [CrossRef] [PubMed] [Google Scholar]
  • Waterhouse A.L., Sacks G.L., Jeffery D.W., 2016. Understanding wine chemistry. 443 p. John Wiley & Sons, Chichester. [Google Scholar]
  • Weiberg A., Wang M., Lin F.-M., Zhao H., Zhang Z., Kaloshian I., Huang H.-D., Jin H., 2014. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 342, 118-123. [Google Scholar]
  • Williamson B., Tudzynski B., Tudzynski P., Van Kan J.A.L., 2007. Botrytis cinerea: The cause of gray mold disease. Mol. Plant Pathol., 8, 561-580. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.