Open Access
Issue
Ciência Téc. Vitiv.
Volume 35, Number 1, 2020
Page(s) 1 - 15
DOI https://doi.org/10.1051/ctv/20203501001
Published online 03 June 2020
  • Allen R.G., Pereira L.S., 2009. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci., 28, 17–34. [Google Scholar]
  • Allen R.G., Pereira L.S., Smith M., Raes D., Wright J.L., 2005. FAO-56 Dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng., 131, 2–13. [CrossRef] [Google Scholar]
  • Amienyo D., Camilleri C., Azapagic A., 2014. Environmental impacts of consumption of Australian red wine in the UK. J. Clean. Prod., 72, 110–119. [Google Scholar]
  • Andreattola G., Foladori P., Ziglio G., 2009. Biological treatment of winery wastewater: an overview. Water Sci. Technol., 60, 1117–1125. [CrossRef] [PubMed] [Google Scholar]
  • Barroso J.M., Pombeiro L., Rato A.E., 2017. Impacts of crop level, soil and irrigation management in grape berries of cv ‘Trincadeira’ (Vitis vinifera L.). J. Wine Res., 28, 1. [Google Scholar]
  • Bolzonella D., Fatone F, Pavan P, Cecchi F., 2010. Application of a membrane bioreactor for winery wastewater treatment. Water Sci. Technol., 62, 2754–2759. [CrossRef] [PubMed] [Google Scholar]
  • Bonamente E., Scrucca F., Asdrubali F., Cotana F., Presciutti A., 2015. The water footprint of the wine industry: Implementation of an assessment methodology and application to a case study. Sustainability, 7, 12190–12208. [Google Scholar]
  • Brissaud F., 2008. Criteria for water recycling and reuse in the Mediterranean countries. Desalination, 218, 24–33. [Google Scholar]
  • Brown I., Poggio L., Gimona A., Castellazzi M., 2011. Climate change, drought risk and land capability for agriculture: implications for land use in Scotland. Reg. Environ. Change, 11, 503–518. [Google Scholar]
  • Campos J., Llop J., Gallart M., García-Ruiz F., Gras A., Salcedo R., Gil E., 2019. Development of canopy vigour maps using UAV for site-specific management during vineyard spraying process. Prec. Agric., 1–21. [Google Scholar]
  • Cancela J.J., Fandiño M., Rey B.J., Martínez E.M., 2015. Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía). Agric. Water Man., 151, 52–63. [CrossRef] [Google Scholar]
  • Capri E., 2016. Footprinting the sustainable wine production in Italy. Available online: http://www.viticolturasostenibile.org/Downloads/Setac_2016.pdf. [Google Scholar]
  • Carvalho L., Gonçalves E., Amâncio S., Martins A., 2019. Polyclonal selection to improve tolerance to abiotic stress. Livro de Actas Simpósio de Vitivinicultura do Alentejo 2019, pp. 35–44. [Google Scholar]
  • Castex V., Moran-Tejeda E., Beniston M., 2015. Water availability, use and governance in the wine producing region of Mendoza, Argentina. Environ. Sci. Policy, 48, 1–8. [Google Scholar]
  • Chaves M.M., Zarrouk O., Francisco R., Costa J.M., Santos T., Regalado A.P., Rodrigues M.L., Lopes C.M., 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Ann. Bot., 105, 661–676. [CrossRef] [PubMed] [Google Scholar]
  • Chiusano L., Cerutti A.K., Cravero M.C., Bruun S., Gerbi V., 2015. An industrial ecology approach to solve wine surpluses problem: the case study of an Italian winery. J. Clean. Prod., 91, 56–63. [Google Scholar]
  • Christ K.L., Burritt R.L., 2013. Critical environmental concerns in wine production: an integrative review. J. Clean. Prod., 53, 232–242. [Google Scholar]
  • Comandaru I., Bârjoveanu G., Peiu N., Ene S., Teodosiu C., 2012. Life cycle assessment of wine: focus on water use impact assessment. Environ. Eng. Man. J., 11, 533–543. [Google Scholar]
  • Corbo C., Lamastra L., Capri E., 2014. From environmental to sustainability programs: a review of sustainability initiatives in the Italian wine sector. Sustainability, 6, 2133–2159. [Google Scholar]
  • Correia A. 2015. A Vitivinicultura na região do Alentejo: A passagem de um setor tradicional para um setor inovador O caso da sub-região vitivinícola de Reguengos de Monsaraz. Dissertação de Mestrado em Gestão do Território – área de especialização em Planeamento e Ordenamento do Território. Universidade Nova de Lisboa. 124pp. [Google Scholar]
  • Costa J.M., Vaz M., Escalona J., Egipto R., Lopes C., Medrano H., Chaves M.M., 2016. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Man., 164, 5–18. [CrossRef] [Google Scholar]
  • Costa J.M., Oliveira M., Egipto R., Fragoso R., Lopes C., Duarte E., 2019. Gestão da água para uma viticultura sustentável no sul de Portugal. Livro de Actas Simpósio de Vitivinicultura do Alentejo 2019, p. 289–297. [Google Scholar]
  • COTR-ATEVA, 2009. Benchmarking na rega e boas práticas na gestão da rega da vinha. Eds. Centro Operativo e de Tecnologia do Regadio, Associação Técnica dos Viticultores do Alentejo. Available online: https://www.ateva.pt/ateva_site_media/cms_page_media/58/Boas%20Praticas%20de%20gest%C3%A3o%20da%20Rega%20da%20Vinha.pdf. [Google Scholar]
  • CSWA 2014. Certified California sustainable winegrowing: certification guidebook. Lloyd’s Register Quality Assurance (LRQA); PE INTERNATIONAL, Inc. & Five Winds Strategic Consulting Eds, San Francisco, USA. 149 pp. [Google Scholar]
  • Cullen P.J., Norton T., 2012. Ozone Sanitisation in the Food Industry. In: Ozone in Food Processing. C. O'Donnell, B.K. Tiwari, P.J. Cullen and R.G. Rice (Eds.), Wiley-Blackwell, Oxford, UK. [Google Scholar]
  • CVRA, 2002. A rega da vinha no Alentejo. Comissão Vitivinícola Regional Alentejana, 2016. Available online: http://sapecagro.pt/download/A_rega_da_Vinha_no_Alentejo.pdf. [Google Scholar]
  • CVRA, 2016. Facts and Figures. Comissão Vitivinícola Regional Alentejana, 2016. Available online: http://www.vinhosdoalentejo.pt/media/cvra/Alentejo_Wines_-_Facts__Figures_Fev2016_Ing.pdf. [Google Scholar]
  • Dalmago G.A., 2004. Dinâmica da água no solo em cultivos de milho sob plantio direto e preparo convencional. , UFRGS, Porto Alegre, Brasil, 245pp.. [Google Scholar]
  • Da Ros, C., Cavinato C., Pavan P., Bolzonella D., 2016. Mesophilic and Thermophilic Anaerobic Co-Digestion of Winery Wastewater Sludge and Wine Lees: An Integrated Approach for Sustainable Wine Production. J. Environ. Man.., 203, 745–752. doi: 10.1016/j.jenvman.2016.03.029. [CrossRef] [Google Scholar]
  • DL 119/2019, de 21 de agosto. Estabelece o regime jurídico de produção de água para reutilização, obtida a partir do tratamento de águas residuais, bem como da sua utilização. https://dre.pt/application/conteudo/124097549. [Google Scholar]
  • Devesa-Rey R., Vecino X., Varela-Alende J.L., Barral M.T., Cruz J.M., Moldes A.B., 2011. Valorization of winery waste vs. the costs of not recycling. Waste Man., 31, 2327–2335. [CrossRef] [Google Scholar]
  • Doruchowski G., Balsari P., Gil E., Marucco P., Roettele M., Wehmann H.J., 2014. Environmentally Optimised Sprayer (EOS) - a software application for comprehensive assessment of environmental safety features of sprayers. Sci. Total Environ., 483, 201–207. [Google Scholar]
  • Duarte E.A., Reis I.B., Martins M.O., 2004. Implementation of an environmental management plan towards the global quality concept – A challenge to the winery sector. In: Proceedings of the 3rd International Specialised Conference on Sustainable Viticulture and Winery Wastes Management, University of Barcelona, Barcelona, Spain, 23–30. [Google Scholar]
  • EDIA, 2018. Anuário Agrícola de Alqueva. Direção de Economia da Água e Apoio ao Cliente - Departamento de Economia da Água, Beja. Available online: https://www.edia.pt/wpcontent/uploads/2019/05/anuario_agricola-alqueva_2018.pdf [Google Scholar]
  • EIP-AGRI, 2019. EIP-AGRI Focus Group Diseases and pests in viticulture, FINAL REPORT, MARCH 2019. Available online: https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/eipagri_fg_diseases_and_pests_in_viticulture_final_report_2019_en.pdf. [Google Scholar]
  • Ene S.A., Teodosiu C., Robu B., Volf I., 2013. Water footprint assessment in the winemaking industry: a case study for a Romanian medium size production plant. J. Clean. Prod., 43, 122–135. [Google Scholar]
  • Engel M., Hörnlein T., Jacques F., Ohlsson A., 2015. Manual de produção mais limpa para adegas. Comissão Vitivinícola Regional Alentejana & International Institute for Industrial Environmental Economics. 43pp., [Google Scholar]
  • EPA, 2004. Guidelines for Wineries and Distilleries. 20 p., Environmental Protection Authority, Adelaide, Australia. Available online:www.epa.sa.gov.au/xstdfiles/Industry/Guideline/guide_wineries.pdf. [Google Scholar]
  • EU Commission, 2012. Gap analysis of the water scarcity and droughts policy in the EU, European Commission Tender ENV.D.1/SER/2010/0049, August 2012. Available online: http://ec.europa.eu/environment/water/quantity/pdf/WSDGapAnalysis.pdf. [Google Scholar]
  • EU Commission 2016. Techniques to reduce spray drift pollution from vineyards. Available online: https://ec.europa.eu/environment/integration/research/newsalert/pdf/techniques_to_reduce_spray_drift_pollution_from_vineyards_433na1_en.pdf. [Google Scholar]
  • EU Commission, 2017. Characterization of unplanned water reuse in the EU. Final report. October 2017. Available online: http://ec.europa.eu/environment/water/pdf/Report-UnplannedReuse_TUM_FINAL_Oct-2017.pdf. [Google Scholar]
  • Esporão, 2018. Guia da colheita 2017 - Guia de bolso. Available online: https://www.esporao.com/wpcontent/uploads/2018/12/Guia_de_Colheita_2017_.pdf. [Google Scholar]
  • Eusébio A, Mateus M, Baeta-Hall L, Almeida-Vara E, Duarte J, 2005. Microflora evaluation of two agro-industrial effluents treated by the JACTO jet-loop type reactor system. Water Sci. Technol., 51, 107–112. [Google Scholar]
  • Fandiño M., Cancela J.J., Rey B.J., Martínez E.M., Rosa R.G., Pereira L.S., 2012. Using the dual-Kc approach to model evapotranspiration of Albariño vineyards (Vitis vinifera L. cv. Albariño) with consideration of active ground cover. Agric. Water Man., 112, 75–87. [CrossRef] [Google Scholar]
  • Farahani H.J., Howell T.A., Shuttleworth W.J., Bausch W.C., 2007. Evapotranspiration: Progress in measurement and modeling in agriculture. Transactions ASABE, 50, 1627–1638. [CrossRef] [Google Scholar]
  • Ferreira M.I., Conceição N., Malheiro A.C., Silvestre J.M., Silva R.M., 2017. Water stress indicators and stress functions to calculate soil water depletion in deficit irrigated grapevine and kiwi. Acta Hortic., 1150, 119–126. [Google Scholar]
  • Fernández B, Seijo I, Ruiz-Filippi G, Roca E, Tarenzi L, Lema JM, 2007. Characterization, management and treatment of wastewater from white wine production. Water Sci. Technol., 56, 121–128. [CrossRef] [PubMed] [Google Scholar]
  • Fraga H, García de Cortázar Atauri I, Santos J, 2018. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Man., 196, 66–74. [CrossRef] [Google Scholar]
  • Gil E., Arnó J., Llorens J., Sanz R., Llop J., Rosell-Polo J.R., Gallart M., Escolà A., 2014. Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview. Sensors, 14, 691–708. [CrossRef] [Google Scholar]
  • Gil E., Llorens J., Landers A., Llop J., Giralt L., 2011, Field validation of dosaviña, a decision support system to determine the optimal volume rate for pesticide application in vineyards. Eur. J. of Agron., 35, 33–46. [CrossRef] [Google Scholar]
  • Gonçalves E., Martins A., 2012. Genetic variability evaluation and selection in ancient grapevine varieties. In: Plant Breeding. Abdurakhmonov, I.Y. (ed.). IntechOpen, 333–352. [Google Scholar]
  • GWRDC, 2011. Winery wastewater management and recycling - operational guidelines. 79 p., Grape and Wine Research and Development Corporation. Adelaide, Australia. Available online: https://www.wineaustralia.com/getmedia/72627da6-d28a-42f2-b600-28fdd5a6c85c/Operational-Guidelines.pdf. [Google Scholar]
  • Hoekstra A.Y., Chapagain A.K., Aldaya M.M., Mekonnen M.M., 2011. The water footprint assessment manual: Setting the global standard. 228 p., Earthscan, London, UK. [Google Scholar]
  • IFV, 2010. Euroviti. Compte Rendu. Effluents phytosanitaires: s’organiser sur son exploitation pour les gérer et les traiter effluents phytosanitaire :s’organiser sur son exploitation pour les gérer et les traiter. Institut Français de la Vigne et du Vin https://www.vignevin.com/wp-content/uploads/2019/03/Itineraires-22-BD.pdf [Google Scholar]
  • Iglesias A., Garrote L., 2015. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Man., 155, 113–124. [CrossRef] [Google Scholar]
  • IPMA, 2017. Instituto Português do Clima e Atmosfera. Available online:https://www.ipma.pt/pt/educativa/tempo.clima/index.jsp?page=clima.pt.xml. [Google Scholar]
  • INE, 2013. Inquérito à estrutura das explorações agrícolas 2013. Instituto Nacional de Estatística, I. P., Lisboa. [Google Scholar]
  • INE, 2016. Inquérito à estrutura das explorações agrícolas 2016. Instituto Nacional de Estatística, I. P., Lisboa. [Google Scholar]
  • ISO, 2014. ISO & water: global solutions to global challenges. Available online: http://www.iso.org/iso/iso_and_water.pdf. [Google Scholar]
  • IVV, 2016. Anuário de Vinhos e Aguardentes de Portugal 2016. Instituto da Vinha e do Vinho, Lisboa. [Google Scholar]
  • IVV, 2018. Anuário de vinhos e aguardentes de Portugal 2018. Instituto da Vinha e do Vinho, Lisboa. [Google Scholar]
  • Keller M., 2015. Managing grapevines to optimize fruit development in a challenging environment: a climate change primer for viticulturists. In: Environmentally Sustainable Viticulture, Practices and Practicality. Gerling C. (ed.), Apple Academic Press, 259–292. [CrossRef] [Google Scholar]
  • Kuflik T., Prodorutti D., Frizzi A., Gafni Y., Simon S., Pertot I., 2009. Optimization of copper treatments in organic viticulture by using a web-based decision support system. Comput. Electron. Agric., 68, 36–43. [Google Scholar]
  • Kumar A., Kookana R., 2006. Impact of winery wastewater on ecosystem health. An introductory assessment. Final report. GWRDC. CSL 02/03. 139. [Google Scholar]
  • Kumar A., Christen E., 2009. Developing a systematic approach to winery wastewater management. Final Report to the GWRDC, Project Number: CSL05/02, CSIRO Land and Water Science Report Adelaide, 31 pp. [Google Scholar]
  • Kyzas G.Z., Symeonidou M.P., Matis K.A., 2016. Technologies of winery wastewater treatment: a critical approach. Desalination Water Treat., 57, 1–15. [CrossRef] [Google Scholar]
  • Lamastra L., Suciu N.A., Novelli E., Trevisan M., 2014. A new approach to assessing the water footprint of wine: an Italian case study. Sci. Total Environ., 490, 748–756. [CrossRef] [PubMed] [Google Scholar]
  • Laurenson S., Bolan N., Smith E., McCarthy M., 2010. Winery wastewater irrigation: Effects of potassium and sodium on soil structure. CRC CARE Technical Report no. 19, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia. [Google Scholar]
  • Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A., 2014. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Man., 146, 84–94. doi: 10.1016/j.agwat.2014.07.012. [CrossRef] [Google Scholar]
  • Liu J., Yang H., Gosling S.N., Kummu M., Flörke M., Pfister S., Hanasaki N., Wada Y., Zhang X., Zheng C., Alcamo J., Oki T., 2017. Water scarcity assessments in the past, present and future. Earth's Future, 5, 545–559. [CrossRef] [PubMed] [Google Scholar]
  • Lofrano G., Belgiorno V., Mascolo A., 2009. Winery wastewater treatment options: drawbacks and advantages. In: Proceedings of the 5th Int. Spec. Conf. on Sust. Vitic.: Winery Wastes and Ecol. Impacts Manag. University of Trento, Trento and Verona, Italy, 27–34. [Google Scholar]
  • Lopes C.M., Costa J.M., Egipto R., Zarrouk O., Chaves M.M, 2018. Can Mediterranean terroirs withstand climate change? Case studies at the Alentejo Portuguese winegrowing region. E3S Web of Conferences, 50, 01004. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lovarelli D., Bacenetti J,, Fiala M., 2016. A new tool for life cycle inventories of agricultural machinery operations. J. Agric. Eng., 47, 40–52. [Google Scholar]
  • Lucas M.S., Peres J.A., Lan B.Y., Puma G.L., 2009. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor. Water Res., 43, 1523–1532 [CrossRef] [PubMed] [Google Scholar]
  • Lucas M.S., Peres J.A., Li Puma G., 2010. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. Sep. Purif. Technol., 72, 235–241. [Google Scholar]
  • Myburgh P.A., 2016. Estimating transpiration of whole grapevines under field conditions. S. Afr. J. Enol. Vitic., 37, 47–60. [Google Scholar]
  • Martins A.A., Araújo A.R., Graça A., Caetano N.S., Mata T.M., 2018. Towards sustainable wine: comparison of two Portuguese wines. J. Clean Prod., 183, 662–676. [Google Scholar]
  • Medrano H., Tomás M., Martorell S., Flexas J., Hernández E., Rosselló J., Pou A., Escalona J.M., Bota J., 2015. From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. The Crop J., 3, 220–228. [CrossRef] [Google Scholar]
  • Moore B.C., Coleman A.M., Wigmosta M.S., Skaggs R.L. and Venteris E.R., 2015. A high spatiotemporal assessment of consumptive water use and water scarcity in the conterminous United States. Water Resour. Manag., 29, 5185–200. [CrossRef] [Google Scholar]
  • Mosse K.P.M., Patti A.F., Christen E.W., Cavagnaro T.R., 2011. Review: Winery wastewater quality and treatment options in Australia. Aust. J. Grape Wine Res., 17, 111–122. [Google Scholar]
  • Neto B., Dias A.C., Machado M., 2013. Life cycle assessment of the supply chain of a Portuguese wine: from viticulture to distribution. Int. J. Life Cycle Assess., 18, 590–602. [Google Scholar]
  • OECD, 2011. Water governance in OECD countries: A multi-level approach. OECD Studies on Water, OECD Publishing. [Google Scholar]
  • OECD, 2014. Enhanced efficacy, efficiency and safety through improved application. Available online: http://www.oecd.org/chemicalsafety/pesticidesbiocides/37237992.pdf. [Google Scholar]
  • OIV, 2018. State of the vitiviniculture world market - April 2018. Available online: http://www.oiv.int/public/medias/5958/oiv-stateof-the-vitiviniculture-world-market-april-2018.pdf. [Google Scholar]
  • Okada D.Y., Delforno T.P., Esteves A.S., Sakamoto I.K., Duarte I.C.S., Varesche M.B.A., 2013. Optimization of linear alkylbenzene sulfonate (LAS) degradation in UASB reactors by varying bioavailability of LAS, hydraulic retention time and specific organic load rate. Bioresource Technol., 128, 125–133. [CrossRef] [Google Scholar]
  • Oliveira M., Costa J.M., Fragoso R., Duarte E., 2019. Challenges for modern wine production in dry areas: dedicated indicators to preview wastewater flows. Water Supply, 19, 653–661. [CrossRef] [Google Scholar]
  • Oliveira M., Duarte E., 2015. Winery wastewater treatment: Evaluation of the air micro-bubble bioreactor performance. Towards a sustainable wine industry. Toward a Sustainable Wine Industry: Green Enology Research, Chapter 4, pp. 79-113. Preston-Wilsey Eds, 1st Edition, CRC Press, Canada. [CrossRef] [Google Scholar]
  • Oliveira M., Duarte E., 2016. Integrated approach to winery waste: waste generation and data consolidation. Front. Environ. Sci. Eng., 10, 168–176. [Google Scholar]
  • Oliveira M., Queda C., Duarte E., 2009. Aerobic treatment of winery wastewater with the aim of water reuse. Water Sci. Technol., 60, 1217–1223. [CrossRef] [PubMed] [Google Scholar]
  • Oliveira M., Costa J.M., Fragoso R., Duarte E., 2019. Challenges for modern wine production in dry areas: dedicated indicators to preview wastewater flows. Water Sci.Technol..: Water Supply, 19 , 653–661. [CrossRef] [Google Scholar]
  • Otto S., Loddo D., Baldoin C., Zanin G., 2015. Spray drift reduction techniques for vineyards in fragmented landscapes. J. Environ. Manage., 162, 290. [CrossRef] [PubMed] [Google Scholar]
  • Peel M.C., Finlayson B.L., McMahon T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11(5), 1633–1644. [Google Scholar]
  • Pereira L.S., Allen R.G., Smith M., Raes D., 2015. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Man., 147, 4–20. [CrossRef] [Google Scholar]
  • Pérez-Expósito J.P., Fernández-Caramés T.M., Fraga-Lamas P., Castedo L., 2017, VineSens: An eco-smart decision-support viticulture system. Sensors, 17, 465. [CrossRef] [Google Scholar]
  • Perry C., 2014. Water footprints: Path to enlightenment, or false trail? Agric. Water Man., 134: 119–125. [CrossRef] [Google Scholar]
  • Peth D., Drastig K., Prochnow A., 2017. Quantity- and qualitybased farm water productivity in wine production: Case studies in Germany. Water, 88, 1–14. [Google Scholar]
  • Petruccioli M., Duarte J.C., Eusebio A., Federici F., 2002. Aerobic treatment of winery wastewater using a jet-loop activated sludge reactor. Process Biochem., 37, 821–829. [Google Scholar]
  • Pfister S., Koehler A., Hellweg S., 2009. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol., 43, 4098–4104. [Google Scholar]
  • Pfister S., Bayer B., 2014. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod., 73, 52–62. [Google Scholar]
  • Pfister S., Boulay A.M., Berger M., Hadjikakou M., Motoshita M., 2017. Understanding the LCA and ISO water footprint: A response to Hoekstra 2016. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic., 72, 352–359. [CrossRef] [PubMed] [Google Scholar]
  • Pirra A., Bianchi A. 2007. A poluição provocada pelo sector vitivinícola”, Rev. Associação Portuguesa de Horticultura, 89, 25–28. [Google Scholar]
  • Quinteiro P., Dias A.C., Pina L., Neto B., Ridoutt B.G., Arroja L., 2014. Addressing the freshwater use of a Portuguese wine (‘vinho verde’) using different LCA methods. J. Clean. Prod., 68, 46–55. [Google Scholar]
  • Radke J., Pinto P., Lachhwani K., Kondolf G.M., Rocha J., Llobet A.S., Edwards D., Francella V., Jurich K., McKnight K., Alex R.A., Eng T., Harrell B., Uennatornwaranggoon F., Wolfson E., Alfaro P.J., Ding E., Marzion R., 2015. Alqueva changing ecologies of the montado landscape, Alentejo, Portugal. Available online: http://ced.berkeley.edu/downloads/research/AlquevaReportLA205-2015.pdf. [Google Scholar]
  • Riou C., Carbonneau A., Becker N., Calo´ A., Costacurta A., Castro R., Pinto P.A., Carneiro L.C., Lopes C., Clímaco P., Panagiotou M.M., Sotez V., Beaumond H.C., Burril A., Maes J., Vossen P., 1994. Le determinisme climatique de la maturation du raisin: Application au zonage de la teneur en sucre dans la Communaute´ Europénne. Office des Publications Officielles des Communautés Européennes, Luxembourg. [Google Scholar]
  • Rochard J., Codis,S., 2004. Gestion des eaux de lavage des pulverisateurs. Institut Français de la Vigne et du Vin, 8p. [Google Scholar]
  • Rochard J., Kerner S., 2009. Innovation environnementale dans la gestion des effluents de cave: application des lits plantes de roseaux. Rev. Oenol. 133S, 36, 52–54. [Google Scholar]
  • Román-Sánchez I.M., Aznar-Sánchez J.A., Belmonte-Ureña L.J., 2015. Heterogeneity of the environmental regulation in Europe. Water Sci. Technol., 72, 1667–1672. [CrossRef] [PubMed] [Google Scholar]
  • Rosell J.R., Sanz R.A., 2012. Review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput. Electron. Agric., 81, 124–141. [Google Scholar]
  • Santiago-Brown I., Metcalfe A., Jerram C., Collins C., 2015. Sustainability assessment in wine-grape growing in the new world: Economic, environmental, and social indicators for agricultural businesses. Sustainability, 7, 8178–8204. [Google Scholar]
  • Santini C., Cavicchi A., Casini L., 2013. Sustainability in the wine industry: key questions and research trends. Agric. Food Econ., 1, 1–14. [CrossRef] [Google Scholar]
  • Saraiva, A.; Egipto, R.; Presumido P.; Jorge C.; Amaral A.; Castro Ribeiro A.; Dias I.; Feliciano M.; Ferreira A.; Ferreira L.; Gonçalves A.; Grifo A.; Mamede H.; Mira H.; Oliveira A.; Oliveira E Silva P.; Paulo A.; Ribeiro A.; Rodrigues G.; Silvestre J.; Ramôa S.; Oliveira M. 2019. Determinação da pegada hídrica na fileira vitivinícola: resultados preliminares de um estudo de caso português. Livro de Actas Simpósio de Vitivinicultura do Alentejo 2019, pp.155–162. [Google Scholar]
  • Shepherd H.L., Grismer M.E., Tchobanoglous G., 2001. Treatment of high-strength winery wastewater using a subsurface flow constructed wetland. Water Environ. Res., 73, 597–606. [CrossRef] [PubMed] [Google Scholar]
  • Silvestre J., Damásio M., Egipto R., Cunha J., Brazão J., Eiras-Dias J. Flores R., Rodrigues A., Donno P., Böhm J., 2018. Tolerância ao escaldão na vinha: uma variável a considerar num contexto de alterações climáticas. Vida Rural, 1842, 38–42. [Google Scholar]
  • Skewes M., 1998. Irrigation benchmarking for winegrapes. Aust. Grape .Wine., 61–64 Skewes M., Meissner A.P., 1997. Irrigation benchmarks and best management practices for winegrapes. Primary Industries and Resources SA. Technical Report. [Google Scholar]
  • Stec A., Zelenáková M., 2019. An analysis of the effectiveness of two rainwater harvesting systems located in Central Eastern Europe. Water, 11, 458, 1–16. [Google Scholar]
  • Stephano N., Quayle W., Arienzo M., Zandona R., Blackwell B., Christen E., 2008. A low cost land based winery wastewater treatment system: Development and preliminary results. CSIRO Land and Water Science Report 43/08, Australia, 58 pp. [Google Scholar]
  • Tsagarakis K.P., Dialynas G.E., Angelakis A.N., 2004. Water resources management in Crete (Greece) including water recycling and reuse and proposed quality criteria. Agric. Water Man., 66, 35–47. [CrossRef] [Google Scholar]
  • UN-WATER, 2015. Climate change adaptation: The pivotal role of water. Available online: http://www.unwater.org/downloads/unw_ccpol_web.pdf. [Google Scholar]
  • van Schoor L.H., 2005. Guidelines for the management of wastewater and soil waste at existing wineries. Winetech Ed. South Africa, 35 pp. [Google Scholar]
  • Vanham D., Bidoglio G., 2013. A review on the indicator water footprint for the EU28. Ecol. Indic., 26, 61–75. [Google Scholar]
  • Vázquez-Rowe I., Villanueva-Rey P., Moreira M.T., Feijoo G., 2012. Environmental analysis of Ribeiro wine from a timeline perspective: Harvest year matters when reporting environmental impacts. J. Environ. Manage., 98, 73–83. [CrossRef] [PubMed] [Google Scholar]
  • Vlyssides A.G., Barampouti E.M., Mai S. 2005. Wastewater characteristics from Greek wineries and distilleries. Water Sci. Technol., 51, 53–60. [Google Scholar]
  • Vörösmarty C.J., Green P., Salisbury J., Lammers R.B., 2000. Global water resources: vulnerability from climate change and population growth. Science, 289, 284–288. [Google Scholar]
  • Welz P.J., Holtman G., Haldenwang R., le Roes-Hill M. 2016. Characterization of winery wastewater from continuous flow settling basins and waste stabilization ponds over the course of 1 year: implications for biological wastewater treatment and land application. Water Sci. Technol., 74, 2036–2050. [CrossRef] [PubMed] [Google Scholar]
  • WHO, 2006. WHO Guidelines for the safe use of wastewater, excreta, and greywater. Vol. IV Excreta and Greywater use in Agriculture. 204 p., WHO, France. [Google Scholar]
  • Xu H., Wu M., 2017. Water availability indices – a literature review. Argonne National Laboratory. February 2017. Available online: http://water.es.anl.gov/documents/Technical%20Report_%20Literature%20Review%20of%20Water%20Availability%20Indices_030317.ems_vs.pdf. [CrossRef] [Google Scholar]
  • Zhuo L., Mekonnen M.M., Hoekstra A.Y., Wada Y., 2016. Interand intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Adv. Water Res., 87, 29–41. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.