Open Access
Issue
Ciência Téc. Vitiv.
Volume 34, Number 1, 2019
Page(s) 1 - 14
DOI https://doi.org/10.1051/ctv/20193401001
Published online 13 March 2019
  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration. Guidelines for computing crop cater requirements. FAO Irrigation and Drainage paper No 56, Rome, Italy. [Google Scholar]
  • Barbagallo, M.G., Guidoni S., Hunter J.J., 2011. Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah. S. Afr. J. Enol. Vitic., 32, 129–136. [Google Scholar]
  • Bock, A., Sparks, T.H., Estrella, N., Menzel, A., 2013. Climateinduced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010. PLoS One, 8 (7), e69015. [CrossRef] [PubMed] [Google Scholar]
  • Calderon-Orellana A., Matthews M.A., Drayton W.M., Shackel K.A., 2014. Uniformity of ripeness and size in Cabernet Sauvignon berries from vineyards with contrasting crop price. Am. J. Enol. Vitic., 65, 81–88. [Google Scholar]
  • Castellarin S.D., Pfeiffer A., Sivilotti P., Degan M., Peterlunger E., Di Gaspero G., 2007. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ., 30, 1381–1399. [CrossRef] [PubMed] [Google Scholar]
  • Clingeleffer P.R., 2010. Plant management research: status and what it can offer to address challenges and limitations. Aust. J. Grape Wine Res., 16, 25–32. [Google Scholar]
  • Dai Z.W., Ollat N., Gomès E., Decroocq S., Tandonnet J-P., Bordenave L., Pieri P., Hilbert G., Kappel C., van Leeuwen C., Vivin P., Delrot S., 2011. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. Am. J. Enol. Vitic., 62, 413–425. [Google Scholar]
  • Fraga, H., García de Cortázar Atauri, I., Malheiro, A.C., Santos, J.A., 2016. Modelling climate change impacts on viticultural yield, phenology and stress conditions. Global Change Biol., 22, 3774–3788. [CrossRef] [Google Scholar]
  • Gil M., Pascual O., Gómez-Alonso S., García-Romero E., Hermosín-Gutiérrez I., Zamora F., Canals J.M., 2015. Influence of berry size on red wine colour and composition. Aust. J. Grape Wine Res., 21, 200–212. [Google Scholar]
  • Gray J., Coombe B.G., 2009. Variation in Shiraz berry size originates before fruitset but harvest is a point of resynchronization for berry development after flowering. Aust. J. Grape Wine Res., 15, 156–165. [Google Scholar]
  • Harbertson J.F., Picciotto E.A., Adams D.O., 2003. Measurement of polymeric pigments in grape berry extracts and wines using a protein precipitation assay combined with bisulfite bleaching. Am. J. Enol. Vitic., 54, 301–306. [Google Scholar]
  • Holt H.E., Francis I.L., Field J., Herderich M.J., Iland P.G., 2008. Relationships between berry size, berry phenolic composition and wine quality scores for Cabernet Sauvignon (Vitis vinifera L.) from different pruning treatments and different vintages. Aust. J. Grape Wine Res., 14, 191–202. [Google Scholar]
  • Houel C., Martin-Magniette M.L., Nicolas S.D., Lacombe T., Le Cunff L., Franck D., Torregrosa L., Conéjéro G., Lalet S., This P., Adam-Blondon A.F., 2013. Genetic variability of berry size in the grapevine (Vitis vinifera L.). Aust. J. Grape Wine Res., 19, 208–220. [Google Scholar]
  • Hunter J.J., Ruffner H.P., 2001. Assimilate transport in grapevines – effect of phloem disruption. Aust. J. Grape Wine Res., 7, 118–126. [Google Scholar]
  • Iland P., Bruer N., Edwards G., Weeks S., Wilkes E., 2004. Chemical Analysis of Grapes and Wine: Techniques and Concepts. 120 p. Patrick Iland Wine Promotions, Campelltown. [Google Scholar]
  • Intrigliolo D.S., Castel J.R., 2008. Effects of irrigation on the performance of grapevine cv. Tempranillo in Requena, Spain. Am. J. Enol. Vitic., 59, 30–38. [Google Scholar]
  • Intrigliolo D.S., Castel J.R., 2011. Interactive effects of deficit irrigation and shoot and cluster thinning on grapevine cv. Tempranillo. Water relations, vine performance and berry and wine composition. Irrig. Sci., 29, 443–454. [CrossRef] [Google Scholar]
  • IPCC, 2014. Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. 1132 p. Cambridge University Press, Cambridge. [Google Scholar]
  • Jackson D.I., Lombard P.B., 1993. Environmental and management practices affecting grape composition and wine quality – A review. Am. J. Enol. Vitic., 44, 409–430. [Google Scholar]
  • Keller, M., 2010. The science of grapevines: Anatomy and physiology. 400 p. Elsevier, Amsterdam. [Google Scholar]
  • Matthews M.A., Anderson M.M., 1988. Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. Am. J. Enol. Vitic., 39, 313–320. [Google Scholar]
  • Matthews M.A., Nuzzo V., 2007. Berry size and yield paradigms on grapes and wines quality. Acta Hortic., 754, 423–436. [Google Scholar]
  • Ribereau-Gayon P., Glories Y., Maujean A., Dubourdieu D., 2000. Phenolic compounds, In: Handbook of Enology, Vol. 2 – The Chemistry of Wine Stabilization and Treatment. 129–187. Ribereau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D. (eds.), John Wiley & Sons, New York. [Google Scholar]
  • Risco D., Pérez D., Yeves A., Castel J.R., Intrigliolo D.S., 2014. Early defoliation in a temperate warm and semi-arid Tempranillo vineyard: vine performance and grape composition. Aust. J. Grape Wine Res., 20, 111–122. [Google Scholar]
  • Robinson, A.L., Boss, P.K., Solomon, P.S., Trengove, R.D., Heymann, H., Ebeler, S.E., 2014. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am. J. Enol. Vitic., 65, 1–24. [Google Scholar]
  • Roby G., Harbertson J.F., Adams D.A., Matthews M.A., 2004. Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Aust. J. Grape Wine Res., 10, 100–107. [Google Scholar]
  • Roby G., Matthews M.A., 2004. Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Aust. J. Grape Wine Res., 10, 74–82. [Google Scholar]
  • Santesteban L.G., Miranda C., Royo J.B., 2011. Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. ‘Tempranillo’. Agric. Water Manage., 98, 1171–1179. [CrossRef] [Google Scholar]
  • Shellie K.C., 2010. Water deficit effect on ratio of seed to berry fresh weight and berry weight uniformity in winegrape cv. Merlot. Am. J. Enol. Vitic., 61, 414–418. [Google Scholar]
  • Simonneau, T., Lebon, E., Coupel-Ledru, A., Marguerit, E., Rossdeustch, L., Ollat, N., 2017. Adapting plant material to face water stress in vineyards: which physiological targets for an optimal control of plant water status? OENO One, 51, 167–169. [CrossRef] [Google Scholar]
  • Singleton V.L., 1972. Effects on red wine quality of removing juice before fermentation to simulate variation in berry size. Am. J. Enol. Vitic., 23, 106–113. [Google Scholar]
  • Triolo, R., Roby, J.P., Plaia, A., Hilbert, G., Buscemi, S., Di Lorenzo, R., van Leeuwen, C., 2018. Hierarchy of factors impacting grape berry mass: separation of direct and indirect effects on major berry metabolites. Am. J. Enol. Vitic., 69, 103–112. [Google Scholar]
  • van Leeuwen, C., Destrac-Irvine, A., 2017. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One, 57, 147–154. [CrossRef] [Google Scholar]
  • Walker R.R., Blackmore D.H., Clingeleffer P.R., Kerridge G.H., Rühl E.H., Nicholas P.R., 2005. Shiraz berry size in relation to seed number and implications for juice and wine composition. Aust. J. Grape Wine Res., 11, 2–8. [Google Scholar]
  • Xie, S., Tang, Y., Wang, P., Song, C., Duan, B., Zhang, Z., Meng, J., 2018. Influence of natural variation in berry size on the volatile profiles of Vitis vinifera L. cv. Merlot and Cabernet Gernischt grapes. PLoS One, 13, e0201374. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.