Open Access
Issue
Ciência Téc. Vitiv.
Volume 32, Number 2, 2017
Page(s) 82 - 92
DOI https://doi.org/10.1051/ctv/20173202082
Published online 15 January 2018
  • Aguirre M.J., Isaacs M., Matsuhiro B., Mendoza L., Santos L.S., Torres S., 2011. Anthocyanin composition in aged Chilean Cabernet Sauvignon red wines. Food Chem, 129, 514–519. [CrossRef] [PubMed] [Google Scholar]
  • Alañón M.E., Schumacher R., Díaz-Maroto M.C., Hermosm-Gutiérrez I., Bettoni J.C., Gardin J.P.P., Pérez-Coello M.S., 2016. By-products of pyro-bituminous shale as amendments in Brazilian vineyards: Influence on polyphenolic composition of Cabernet Sauvignon wines. Food Res. Int., 81, 122–132. [CrossRef] [Google Scholar]
  • Alcalde-Eon C., Boido E., Carrau F., Dellacassa E., Rivas-Gonzalo J.C., 2006. Pigment profiles in monovarietal wines produced in Uruguay. Am. J. Enol. Vitic., 57, 449-459. [Google Scholar]
  • Arenhart M., 2015. Caracterização fisico-quimica, fenólica e sensorial da cv. Marselan de diferentes regiões do Rio Grande do Sul. 96p. PhD Thesis, Universidade Federal de Santa Maria. [Google Scholar]
  • Arozarena I., Ayestarán B., Cantalejo M., Navarro M., Vera M., Abril I., Casp A., 2002. Anthocyanin composition of Tempranillo, Garnacha and Cabernet Sauvignon grapes from high- and low-quality vineyards over two years. Eur. Food Res. Technol., 214, 303–309. [CrossRef] [Google Scholar]
  • Avizcuri J.-M., Sáenz-Navajas M.-P., Echavarri J.-F., Ferreira V., Fernandez-Zurbano P., 2016. Evaluation of the impact of initial red wine composition on changes in color and anthocyanin content during bottle storage. Food Chem., 213, 123–134. [CrossRef] [PubMed] [Google Scholar]
  • Barra F.L., 2006. Method for Thermal Pest Control. 4p.US Patent. US 7134239 B2. [Google Scholar]
  • Behrens J.H., Silva M.A.A.P. da., 2000. Perfil sensorial de vinhos brancos varietais brasileiros atraves de analise descritiva quantitativa. Cienc. Tecnol. Aliment., 20, 60-67. [CrossRef] [Google Scholar]
  • Belli N., Mitchell D., Marin S., Alegre I., Ramos A.J., Magan N., Sanchis V., 2005. Ochratoxin A-producing fungi in Spanish wine grapes and their relationship with meteorological conditions. Eur. J. Plant Pathol., 113, 233–239. [CrossRef] [Google Scholar]
  • Bindon K., Holt H., Williamson P.O., Varela C., Herderich M., Francis I.L., 2014. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 2. Wine sensory properties and consumer preference. Food Chem., 154, 90–101. [CrossRef] [Google Scholar]
  • Boido E., Alcalde-Eon C., Carrau F., Dellacassa E., Rivas-Gonzalo J.C., 2006. Aging effect on the pigment composition and color of Vitis vinifera L. Cv. Tannat wines. Contribution of the main pigment families to wine color. J. Agric. Food Chem., 54, 6692–6704. [CrossRef] [PubMed] [Google Scholar]
  • Brasil, 1988. Lei no 7.678, 8 de novembro de 1988, Diario da Republica, 1a serie - no 116 3901–3902. [Google Scholar]
  • Burns J., Mullen W., Landrault N., Teissedre P.-L., Lean M.E.J., Crozier A., 2002. Variations in the profile and content of anthocyanins in wines made from Cabernet Sauvignon and hybrid grapes. J. Agric.Food Chem., 50, 4096–4102. [CrossRef] [Google Scholar]
  • Chapman D.M., Matthews M.A., Guinard J.X., 2004. Sensory attributes of Cabernet Sauvignon wines made from vines with different crop yields. Am. J. Enol. Vitic., 55, 325–334. [Google Scholar]
  • Daudt C.E., 1971. Determinação da fermentação malolatica em vinhos pela cromatografia em papel. Cienc. Rural, 1, 81–94. [Google Scholar]
  • De la Cruz A.A., Hilbert G., Riviere C., Mengin V., Ollat N., Bordenave L., Decroocq S., Delaunay J., Delrot S., Mérillon J., Monti J., Gomes E., Richard T., 2012. Anthocyanin identification and composition of wild Vitis spp. accessions by using LC–MS and LC–NMR. Anal. Chim. Acta,732, 145-152. [CrossRef] [PubMed] [Google Scholar]
  • EMBRAPA, 2006. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro, 2006. 306p. [Google Scholar]
  • Fischer M., 2012. The TPT Technology Manual. 17p. CEO Lazo TPC Global, Inc. [Google Scholar]
  • Giusti M.M., Wrolstad R.E., 2005. Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. In Current Protocols in Food Analytical Chemistry F:F1:F1.2. John Wiley & Sons, Inc. [Google Scholar]
  • Gordillo B., Rodriguez-Pulido F.J., Mateus N., Escudero-Gilete M.L., González-Miret M.L., Heredia F.J., de Freitas V., 2012. Application of LC-MS and tristimulus colorimetry to assess the ageing aptitude of Syrah wine in the Condado de Huelva D.O. (Spain), a typical warm climate region. Anal. Chim. Acta, 732, 162–171. [CrossRef] [PubMed] [Google Scholar]
  • He F., Liang N.N., Mu L., Pan Q.H., Wang J., Reeves M.J., Duan C.Q., 2012a. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules, 17, 1571–1601. [CrossRef] [PubMed] [Google Scholar]
  • He F., Liang N.N., Mu L., Pan Q.H., Wang J., Reeves M.J., Duan C.Q., 2012b. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules, 17, 1483–1519. [CrossRef] [Google Scholar]
  • ICH, 2005. Validation of analytical procedures: text and methodology Q2 (R1). International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use.,1–13. [Google Scholar]
  • INMET, 2016. Available at: http://www.inmet.gov.br/portal/ (Accessed 20 jul 2016). [Google Scholar]
  • Jochum G.M., Mudge K.W., Thomas R.B., 2007. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am. J. Bot., 94, 819–826. [CrossRef] [PubMed] [Google Scholar]
  • Lambert S.G., Asenstorfer R.E., Williamson N.M., Iland P.G., Jones G.P., 2011. Copigmentation between malvidin-3-glucoside and some wine constituents and its importance to colour expression in red wine. Food Chem., 125, 106–115. [CrossRef] [Google Scholar]
  • Manns D.C., Mansfield A.K.. 2012. A core-shell column approach to a comprehensive high-performance liquid chromatography phenolic analysis of Vitis vinifera L. and interspecific hybrid grape juices, wines, and other matrices following either solid phase extraction or direct injection. J. Chromatogr. A, 1251, 111–121. [CrossRef] [PubMed] [Google Scholar]
  • Noble A.C., Arnold R.A., Buechsenstein J., Leach E.J., Schmidt J.O., Stern P.M., 1987. Modification of a standardized system of wine aroma terminology. Am. J. Enol. Vitic, 38, 143–146. [Google Scholar]
  • Official Journal of the European Union, 2006. Agreement on mutual recgonition between the United States of America and the European Community. Official Journal of the European Union. 73p. [Google Scholar]
  • OIV, 2011. Compendium of international Methods of Wine and must Analysis. 510p. International Organisation of vine and wine, Paris. [Google Scholar]
  • Pedastsaar P., Vaher M., Helmja K., Kulp M., Kaljurand M., Karp K., Püssa T., 2014. Chemical composition of red wines made from hybrid grape and common grape (Vitis vinifera L.) cultivars. P. Est. Acad. Sci., 63, 444. [CrossRef] [Google Scholar]
  • Protas J.F.S., Camargo U.A., Mello L.M.R., 2014. A vitivinicultura brasileira: realidade e perspectivas. Empresa Brasileira de Pesquisa Agropec-uaria Uva e Vinho. 8p. Available at: http://www.cnpuv.embrapa.br/publica/artigos/vitivinicultura/ (Accessed 19 jul 2016). [Google Scholar]
  • Pszczólkowski P., Lecco C.C. de., 2011. Manual de Vinificación: Guía práctica para la elabóracion de vinos. 124p. Ediciones Universidad católica de Chile, Chile. [Google Scholar]
  • Ramakrishna A., Ravishankar G.A., 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav., 6, 1720–1731. [CrossRef] [PubMed] [Google Scholar]
  • Ribèreau-Gayon P., Glories Y., Maujean A., Dubourdieu D., 2006. Handbook of Enology, The Chemistry of Wine: Stabilization and Treatment. 441p. John wiley & Sons, England. [Google Scholar]
  • Rodriguez-Saona L.E., Wrolstad R.E., 2001. Extraction, Isolation, and Purification of anthocyanins. In: Current Protocols in Food Analytical Chemistry, F1.1.1–F1.1.11. John wiley & Sons, Inc. [Google Scholar]
  • Singleton V.L., Rossi J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144-158. [Google Scholar]
  • Stone H., Sidel J.L., 2004. Sensory Evaluation Practices. Sensory Evaluation Practices. 408p. Academic Press, United States. [Google Scholar]
  • Streck E.V., Kampf N., Dalmolin R.S.D., Klamt E., Nascimento P.C. do, Schneider P., Giasson E., Pinto L.F.S., 2008. Solos do Rio Grande do Sul. Porto Alegre: EMATER/RS; UFRGS, 222p. [Google Scholar]
  • Treutter D., 2010. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints. Int. J. Mol. Sci., 11, 807–857. [CrossRef] [PubMed] [Google Scholar]
  • UVIBRA, 2015. Produção de uvas, elaboração de vinho e derivados 2005 a 2015. 3p. Available at: http://www.uvibra.com.br/pdf/safra_uva2005-2015.pdf (Accessed 20 jul 2016). [Google Scholar]
  • Vidal S., Francis L., Williams P., Kwiatkowski M., Gawel R., Cheynier V., Waters E., 2004. The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium. Food Chem., 85, 519–525. [CrossRef] [Google Scholar]
  • Wilcox W., 2016. Grape Disease Control. Cornell University, 74p. NY State Agricultural Experiment Station, Geneva. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.