Open Access
Issue |
Ciência Téc. Vitiv.
Volume 31, Number 1, 2016
|
|
---|---|---|
Page(s) | 14 - 23 | |
DOI | https://doi.org/10.1051/ctv/20163101014 | |
Published online | 26 July 2016 |
- Adolfsson L., Solymosi K., Andersson M.X., Keresztes A., 2015. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production. Plos One, 10, 1–18. [CrossRef] [Google Scholar]
- Alaoui-Sossé B., Genet P., Vinit-Dunand F., Toussaint M.L., Epron D., Badot P.M., 2004. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science, 166, 1213–1218. [CrossRef] [Google Scholar]
- Amarante C.V.T., Zanardi O.Z., Miqueloto A., Steffens C.A., Erhart J., Almeida J.A., 2009. Quantificação da área e do teor de clorofilas em folhas de plantas jovens de videira ‘Cabernet Sauvignon’ mediante métodos não destrutivos. Rev. Brasileira de Fruticultura, 31, 680–686. [Google Scholar]
- Ambrosini V.G., Voges J.G., Canton L., Couto R.R., Ferreira P.A.A., Comin J.J., Melo G.W.B., Brunetto G., Soares C.R.F.S., 2015. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil. Brazilian Jour. Microbiology, 46, 1045–1052. [CrossRef] [Google Scholar]
- Andrade S.A.L., Silveira A.P.D., Mazzafera P., 2010. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Sci. of the Total Environment, 408, 5381–5391. [CrossRef] [Google Scholar]
- Boldt K., Pörs Y., Haupt B., Bitterlich M., Kühn C., Grimm B., Franken P., 2011. Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. Jour. of Plant Physiology, 168, 1256–1263. [CrossRef] [Google Scholar]
- Borghezan M., Gavioli O., Pit F.A., Silva A.L., 2010. Modelos matemáticos para a estimativa da área foliar de variedades de videira à campo (Vitis vinifera L.). Ciência Téc. Vitiv., 25, 1–7. [Google Scholar]
- Cambrollé J., García J.L., Figueroa M. E., Cantos M., 2015. Evaluating wild grapevine tolerance to copper toxicity. Chemosphere, 120C, 171–178. [CrossRef] [Google Scholar]
- Cornejo P., Pérez-Tienda J., Meier S., Valderas A., Borie F., Azcón-Aguilar C., Ferrol N., 2013. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biol. and Biochemistry, 57, 925–928. [CrossRef] [Google Scholar]
- CQFS-RS/SC., 2004. Manual de adubação e calagem para os Estados do Rio Grande do Sul e de Santa Catarina. 10 ed. EMBRAPA, Porto Alegre. [Google Scholar]
- Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. [CrossRef] [Google Scholar]
- EMBRAPA, 1997. Manual de métodos de análise de solo. Rio de Janeiro: Embrapa Solos, p. 212. [Google Scholar]
- EMBRAPA, 2013. Sistema brasileiro de classificação de solos. 3 Ed. Brasília, 2013. [Google Scholar]
- Folli-Pereira M.S., Meira-Haddad L.S., Bazzolli D.M.S., Kasuya M.C.M., 2012. Micorriza arbuscular e a tolerância das plantas ao estresse. Revista Brasileira de Ciência do Solo, 36, 1663–1679. [CrossRef] [Google Scholar]
- Gerdemann J.W., Nicolson T.H., 1963. Spores of micorrhizal Endogene species extracted from soil by wet sieving and decanting. Trans. Brit. Mycol. Soc., 75, 235–244. [CrossRef] [Google Scholar]
- Giovannetti M., Mosse B., 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New phytologist, 84, 489–500. [CrossRef] [Google Scholar]
- Girotto E., Ceretta C.A., Rossato L.V., Farias J.G., Tiecher T L., De Conti L., Schmatz R., Brunetto G., Schetinger M.R.C., Nicoloso F T., 2013. Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry. Ecotox. and Environ. Safety, 93, 145–155. [CrossRef] [Google Scholar]
- Gupta D.K., Chatterjee S., Datta S., Veer V., Walther C., 2014. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere, 108, 134–144. [CrossRef] [PubMed] [Google Scholar]
- Hippler F.W.R., Moreira M., 2013. Dependência micorrízica do amendoinzeiro sob doses de fósforo. Bragantia, 72, 184–191. [CrossRef] [Google Scholar]
- Hiscox J.D., Israelstam G.F., 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. Jour. of Botany, 57, 1332–1334. [CrossRef] [Google Scholar]
- Kabata-Pendias A., 2011 Trace elements in soils and plants. 505p. 4 Ed. Taylor e Francis Group, Boca Raton. [Google Scholar]
- Koske R.E., Gemma J.N., 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 92, 486–488. [CrossRef] [Google Scholar]
- Kopittke P.M., Asher C., Blamey F.P.C., Menzies N. W., 2009. Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Sci. of the Total Environment, 407, 4616–4621. [CrossRef] [Google Scholar]
- Marschner P., 2012. Mineral Nutrition of Higher Plants. 651p, Elsevier, Oxford. [Google Scholar]
- McCready R., Guggolz J., Silveira V., Owens H., 1950. Determination of starch and amylose in vegetables. Analytical Chemistry, 22, 1156–1158. [CrossRef] [Google Scholar]
- Meier S., Borie F., Curaqueo G., Bolan N., Cornejo P., 2012. Effects of arbuscular mycorrhizal inoculation on metallophyte and agricultural plants growing at increasing copper levels. Applied Soil Ecology, 61, 280–287. [CrossRef] [Google Scholar]
- Nachtigall G.R., Corrêa R., Reynaldo L., Alleoni F., 2007. Formas de cobre em solos de vinhedos em função do pH e da adição de cama-de-frango. Rev. Bras. de Eng. Agricola e Ambiental, 7, 427–434. [Google Scholar]
- Pigna M., Caporale A.G., Cartes P., Cozzolino V., Mora M., Sommella A., Violante A., 2014. Effects of arbuscular mycorrhizal inoculation and phosphorus fertilization on the growth of escarole (Cichorium endivia L.) in an arsenic polluted soil. Jour. of Soil Sci. and Plant Nutrition, 14, 199–209. [Google Scholar]
- Saba H., Jyoti P., Neha S., 2013. Mycorrhizae and phytochelators as remedy in heavy metal contaminated land remediation. Inter. Research Jour. of Environ. Sciences, 2, 74–78. [Google Scholar]
- Schreiner R. P., 2007. Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of “Pinot noir” (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Applied Soil Ecology, 36, 205–215. [CrossRef] [Google Scholar]
- Silva A., Doazan J., 1995. Une méthode d’irradiation aux rayons gamma appliquée à des porte-greffes de vigne in vitro. Jour. Inter. des Sciences de la Vigne et du Vin, 29, 1–9. [Google Scholar]
- Soares C.R.F.S., Siqueira J.O., 2008. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Bio. and Fertility of Soils, 44, 833–841. [CrossRef] [Google Scholar]
- Sônego O., Garrido L., Júnio A.G., 2005. Principais doenças fúngicas da videira no Sul do Brasil, 32p. Embrapa, Bento Gonçalves. [Google Scholar]
- Tedesco M., Gianello C., Bissani C., 1995. Análises de solo, plantas e outros materiais. 174p. UFRGS, Porto Alegre. [Google Scholar]
- Toselli M., Schiatti P., Ara D., Bertacchini A., Quartieri M., 2009. The accumulation of copper in soils of the Italian region Emilia-Romagna. Plant Soil Environ., 55, 74–79. [Google Scholar]
- Wellburn A.R., 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313. [CrossRef] [Google Scholar]
- Yruela I., 2009. Copper in plants: acquisition, transport and interactions. Funct. Plant Biology, 36, 409–430. [CrossRef] [Google Scholar]
- Zemke J.M., Pereira F., Lovato P.E., Da Silva A.L., 2003. Avaliação de substratos para inoculação micorrízica e aclimatização de dois porta-enxertos de videira micropropagados. Pesq. Agropecuária Brasileira, 38, 1309–1315. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.