Open Access
Issue
Ciência Téc. Vitiv.
Volume 31, Number 1, 2016
Page(s) 24 - 30
DOI https://doi.org/10.1051/ctv/20163101024
Published online 26 July 2016
  • Aoudia H., Ntalli N., Aissani N., Yahiaoui-Zaidi R., Caboni P., 2012. Nematotoxic phenolic compounds from Melia azedarach against Meloidogyne incognita. J. Agric. Food Chem., 60:11675–11680. [CrossRef] [PubMed] [Google Scholar]
  • Archana B., Saxena R., 2012. Nematicidal effect of root extract of certain medicinal plants in control of J2 of Meloidogyne incognita in vitro and in vivo conditions. Pak. J. Nematol., 30:179–187. [Google Scholar]
  • Arvanitoyannis I.S., Ladas D., Mavromatis A., 2006. Wine waste treatment methodology. Int. J. Food Sci. Technol., 41:1117–1151. [CrossRef] [Google Scholar]
  • Barcia T.M., Pertuzatti B.P., Gómez-Alonso S., Godoy T.H., Hermosín-Gutiérrez I., 2014. Phenolic composition of grape and winemaking by-products of Brazilian hybrid cultivars BRS Violeta and BRS Lorena. Food Chem., 159:95–105. [CrossRef] [PubMed] [Google Scholar]
  • Brahim M., Gambier F., Brosse N., 2014. Optimization of polyphenols extraction from grape residues in water medium. Ind. Crop. Prod., 52:18–22. [CrossRef] [Google Scholar]
  • Boneti J.I.S., Ferraz S., 1981. Modificação do método de Hussey e Barker para extração de ovos de Meloidogyne exígua de raízes de cafeeiro. Fitopatol. Brasileira., 6:553. [Google Scholar]
  • Chen S.Y., Dickson D.W., 2000. A technique for determining live second-stage juveniles of Heterodera glycines. J. Nematol., 32:117–121. [PubMed] [Google Scholar]
  • Chitwood D.J., 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol., 40:221–249. [CrossRef] [PubMed] [Google Scholar]
  • Christie J.R., Perry V.G., 1951. Removing nematodes from soil. Proc. Helminthol. Soc. Washington., 18:106–108. [Google Scholar]
  • Collange B., Navarrete M., Peyre G., Mateille T., Tchamitchian M., 2011. Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot., 30:1251–1262. [CrossRef] [Google Scholar]
  • El-Rokiek G.K., El-Nagdi M.W., 2011. Dual effects of leaf extracts of Eucalyptus citriodora on controlling purslane and root-knot nematode in sunflower. J. Plant Prot. Res., 51:121–129. [Google Scholar]
  • Farías-Campomanes A.M., Rostagno M.A., Meireles M.A.A., 2013. Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. J. of Supercritical Fluids, 77:70–78. [CrossRef] [Google Scholar]
  • Ferraz S., Freitas L.G., Lopes E.A., Dias-Arieira C.R., 2010. Manejo sustentável de fitonematoides. 306p. UFV, Viçosa. [Google Scholar]
  • Hussey R.S., Barker K.R., 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Rep., 57:1025–1028. [Google Scholar]
  • ICH, 1998. Validation of analytical procedures: Methodology. ICH harmonized tripartite guideline. <http://www.hc-sc.gc.ca/hpbdgps/therapeut> Acesso em 15 de fevereiro de 2015.. [Google Scholar]
  • Jang M., Cai L., Udeani G.O., Slowing K.V., Thomas C.F., Beecher C.W., Fong H.H., Farnsworth N.R., Kinghorn A.D., Mehta R.G., Moon R.C., Pezzuto J.M., 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Sci., 275:218–220. [CrossRef] [Google Scholar]
  • Makris P.D., Boskou G., Andrikopoulos K.N., 2007. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal., 20:125–132. [CrossRef] [Google Scholar]
  • Mbaveng T.A., Zhao Q., Kuete V., 2014. Harmful and protective effects of phenolic compounds from African medicinal plants. In Toxicological Survey of African Medicinal Plants. 577–609. Kuete V. (ed.), Elsevier. [Google Scholar]
  • Melo P.S., Bergamaschi K.B., Tiveron A.P., Massarioli A.P., Oldoni T.L.C., Zanus M.C., Pereira G.E., Alencar S.M., 2011. Composição fenólica e atividade antioxidante de resíduos agroindustriais. Ciênc. Rural, 41:1088–1093. [CrossRef] [Google Scholar]
  • Mukhtar T., Kayani Z.M., Hussain A.M., 2013. Nematicidal activities of Cannabis sativa L. and Zanthoxylum alatum Roxb. against Meloidogyne incognita. Ind. Crop. Prod., 42:447–453. [CrossRef] [Google Scholar]
  • Nguyen D.M.C., Seo D.J., Lee H.B., Kim S., Kim K.Y., Park R.D., Jung W.J., 2013. Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microb. Pathogen., 56:8–15. [CrossRef] [Google Scholar]
  • Nguyen D.M.C., Seo D.J., Nguyen V.N., Kim K.Y., Park R.D., Jung W.J., 2013. Nematicidal activity of gallic acid purified from Terminalia nigrovenulosa bark against the root-knot nematode Meloidogyne incognita. Nematol., 15:507–518. [CrossRef] [Google Scholar]
  • Nico A.I., Jiménez-Díaz R.M., Castillo P., 2004. Control of rootknot nematodes by composted agroindustrial wastes in potting mixtures. Crop Prot., 23:581–587. [CrossRef] [Google Scholar]
  • Oka Y., 2010. Mechanisms of nematode suppression by organic soil amendments - A review. Appl. Soil Ecol., 44:101–115. [CrossRef] [Google Scholar]
  • Oka Y., Yermiyahu U., 2002. Suppressive effects of composts against the root-knot nematode Meloidogyne javanica on tomato. Nematol., 4:891–898. [CrossRef] [Google Scholar]
  • Oka Y., Shapira N., Fine P., 2007. Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Prot., 26:1556–1565. [CrossRef] [Google Scholar]
  • Paulo L., Oleastro M., Gallardo E., Queiroz J.A., Domingues F., 2011. Anti-Helicobacter pylori and urease inhibitory activities of resveratrol and red wine. Food Res. Int., 44:964–969. [CrossRef] [Google Scholar]
  • Rockenbach I.I., Silva G.L., Rodrigues E., Kuskoski E.M., Fett R., 2008. Influência do solvente no conteúdo total de polifenóis, antocianinas e atividade antioxidante de extratos de bagaço de uva (Vitis vinifera) variedades Tannat e Ancelota. Ciênc. Tecnol. Aliment., 28:238–244. [CrossRef] [Google Scholar]
  • Rodríguez-Kábana R., Morgan-Jones G., Chet I., 1987. Biological control of nematodes: Soil amendments and microbial antagonists. Plant Soil, 100:237–247. [CrossRef] [Google Scholar]
  • Rubilar M., Pinelo M., Shene C., Sineiro J., Nuñez M.J., 2007. Separation and HPLC-MS identification of phenolic antioxidants from agricultural residues: almond hulls and grape pomace. J. Agric. Food Chem., 55:10101–10109. [CrossRef] [PubMed] [Google Scholar]
  • Silván J.M., Mingo E., Hidalgo M., Pascual-Teresa S., Carrascosa A.V., Martinez-Rodriguez A.J., 2013. Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food Control, 29:25–31. [CrossRef] [Google Scholar]
  • Tabarant P., Villenave C., Risede J.M., Roger-Estrade J., Thuries L., Dorela M., 2011. Effects of four organic amendments on banana parasitic nematodes and soil nematode communities. Appl. Soil Ecol., 49:59–67. [CrossRef] [Google Scholar]
  • Yi C., Shi J., Kramer J., Xue S., Jiang Y., Zhang M., Ma Y., Pohorly J., 2009. Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chem., 114:570–576. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.