Open Access
Issue
Ciência Téc. Vitiv.
Volume 30, Number 1, 2015
Page(s) 29 - 42
DOI https://doi.org/10.1051/ctv/20153001029
Published online 07 August 2015
  • Anderson K., 2014. Changing Varietal Distinctiveness of the World’s Wine Regions: Evidence from a New Global Database. Journal of Wine Economics, 9(3), 249–272. [CrossRef] [Google Scholar]
  • Andrade C., Fraga H., Santos J.A., 2014. Climate change multimodel projections for temperature extremes in Portugal. Atmos. Sci. Lett., 15(2), 149–156. [CrossRef] [Google Scholar]
  • Ben-Asher J., van Dam J., Feddes R.A., Jhorar R.K., 2006. Irrigation of grapevines with saline water: II. Mathematical simulation of vine growth and yield. Agric. Water Manag., 83(1–2), 22–29. [CrossRef] [Google Scholar]
  • Berdeja M., Hilbert G., Dai Z.W., Lafontaine M., Stoll M., Schultz H.R., Delrot S., 2014. Effect of water stress and rootstock genotype on Pinot Noir berry composition. Aust. J. Grape Wine R., 20(3), 409–421. [CrossRef] [Google Scholar]
  • Bindi M., Miglietta F., Gozzini B., Orlandini S., Seghi L., 1997. A simple model for simulation of growth and development in grapevine (Vitis vinifera L).1. Model description. Vitis, 36(2), 67–71. [Google Scholar]
  • Bock A., Sparks T., Estrella N., Menzel A., 2011. Changes in the phenology and composition of wine from Franconia, Germany. Clim. Res., 50(1), 69–81. [CrossRef] [Google Scholar]
  • Bois B., Wald L., Pieri P., van Leeuwen C., Commagnac L., Chew P., Christen M., Gaudillere J.P., Saur E., 2008. Estimating spatial and temporal variations in solar radiation within Bordeaux winegrowing region using remotely sensed data. J. Int. Sci. Vigne Vin, 42(1), 15–25. [Google Scholar]
  • Brisson N., 2004. Special issue: Crop model STICS (simulateur mulTIdisciplinaire pour les cultures standard). Agronomie, 24(6–7), 293–293. [CrossRef] [Google Scholar]
  • Brisson N., Gary C., Justes E., Roche R., Mary B., Ripoche D., Zimmer D., Sierra J., Bertuzzi P., Burger P., Bussière F., Cabidoche Y.M., Cellier P., Debaeke P., Gaudillère J.P., Hénault C., Maraux F., Seguin B., Sinoquet H., 2003. An overview of the crop model stics. Eur. J. Agron., 18(3–4), 309–332. [CrossRef] [Google Scholar]
  • Brisson N., Launay M., Mary B., Beaudoin N., 2008. Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model. 297 p. Editions Quae, Versailles. [Google Scholar]
  • Brisson N., Ozier-Lafontaine H., Dorel M., 1998. Effects of soil management and water regime on banana growth between planting and flowering. Simulation using the STICS model. In: Proceedings of the First International Symposium on Banana in the Subtropics, 490, 229–238. [CrossRef] [Google Scholar]
  • Brisson N., Pieri P., Lebon E., 2011. On the Interest of Introducing Irrigation and Changing Practices Tomorrow in Some French Vineyard Areas. In: VI International Symposium on Irrigation of Horticultural Crops, 889, 167–174. [CrossRef] [Google Scholar]
  • Brisson N., Ruget F., Gate P., Lorgeau J., Nicoullaud B., Tayot X., Plenet D., Jeuffroy M.H., Bouthie A., Ripoche D., Mary B., Justes E., 2002. STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie, 22(1), 69–92. [CrossRef] [Google Scholar]
  • Bruckler L., Lafolie F., Ruy S., Granier J., Baudequin D., 2000. Modelling the agricultural and environmental consequences of non 39 uniform irrigation on a maize crop. 1. Water balance and yield. Agronomie, 20(6), 609–624. [CrossRef] [Google Scholar]
  • Caffarra A., Eccel E., 2010. Increasing the robustness of phenological models for Vitis vinifera cv. Chardonnay. Int. J. Biometeorol., 54(3), 255–267. [CrossRef] [PubMed] [Google Scholar]
  • Caffarra A., Eccel E., 2011. Projecting the impacts of climate change on the phenology of grapevine in a mountain area. Aust. J. Grape Wine R., 17(1), 52–61. [CrossRef] [Google Scholar]
  • Caffarra A., Rinaldi M., Eccel E., Rossi V., Pertot I., 2012. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric. Ecosyst. Environ., 148, 89–101. [CrossRef] [Google Scholar]
  • Calonnec A., Cartolaro P., Naulin J.M., Bailey D., Langlais M., 2008. A host-pathogen simulation model: powdery mildew of grapevine. Pl. Pathol., 57(3), 493–508. [CrossRef] [Google Scholar]
  • Carbonneau A., 2003. Ecophysiologie de la vigne et terroir. In: Terroir, zonazione, viticoltura. Trattato internazionale. 61–102, Phytoline. [Google Scholar]
  • Celette F., Ripoche A., Gary C., 2010. WaLIS—A simple model to simulate water partitioning in a crop association: The example of an intercropped vineyard. Agric. Water Manag., 97(11), 1749–1759. [CrossRef] [Google Scholar]
  • Celette F., Valdes H., Gary C., Ortega-Farias S., Acevedo C., de Cortazar I.G., 2008. Evaluation of the STICS model for simulating vineyard water balance under two different water management strategies. In: Proceedings of the Fifth International Symposium on Irrigation of Horticultural Crops, 792, 155–162. [CrossRef] [Google Scholar]
  • Challinor A.J., Wheeler T.R., 2008. Crop yield reduction in the tropics under climate change: Processes and uncertainties. Agric. For. Meteorol., 148(3), 343–356. [CrossRef] [Google Scholar]
  • Chuine I., Kramer K., Hanninen H., 2003. Plant development models. In: Phenology - An Integrative Environmental Science, Tasks for vegetation science 39. 217–235. Schwartz M.D. (ed.), Kluwer Academic Publishers. [Google Scholar]
  • Chuine I., Yiou P., Viovy N., Seguin B., Daux V., Ladurie E.L., 2004. Historical phenology: Grape ripening as a past climate indicator. Nature, 432(7015), 289–290. [CrossRef] [PubMed] [Google Scholar]
  • Coelho J.C., Lopes C.M., Braga R., Pinto P.A., Egipto R.J.L., 2013. Avaliação do impacte das alterações climáticas na sustentabilidade económica da cultura da vinha no Alentejo. In: VII APDEA Congress - ESADR 2013, P15, 4015–4039. [Google Scholar]
  • Cola G., Mariani L., Salinari F., Civardi S., Bernizzoni F., Gatti M., Poni S., 2014. Description and testing of a weather-based model for predicting phenology, canopy development and source– sink balance in Vitis vinifera L. cv. Barbera. Agric. For. Meteorol., 184, 117–136. [CrossRef] [Google Scholar]
  • Costa A.C., Santos J.A., Pinto J.G., 2012. Climate change scenarios for precipitation extremes in Portugal. Theor. Appl. Climatol., 108(1–2), 217–234. [CrossRef] [Google Scholar]
  • Coucheney E., Buis S., Launay M., Constantin J., Mary B., García de Cortázar-Atauri I., Ripoche D., Beaudoin N., Ruget F., Andrianarisoa K.S., Le Bas C., Justes E., Léonard J., 2015. Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France. Environ. Model. Software, 64, 177–190. [CrossRef] [Google Scholar]
  • Courault D., Ruget F., 2001. Impact of local climate variability on crop model estimates in the south-east of France. Clim. Res., 18(3), 195–204. [CrossRef] [Google Scholar]
  • Cunha M., Abreu I., Pinto P., de Castro R., 2003. Airborne pollen samples for early-season estimates of wine production in a Mediterranean climate area of northern Portugal. Am. J. Enol. Vitic., 54(3), 189–194. [Google Scholar]
  • Cunha M., Marcal A.R.S., Silva L., 2010. Very early prediction of wine yield based on satellite data from vegetation. Int. J. Remote Sens., 31(12), 3125–3142. [CrossRef] [Google Scholar]
  • Cunha M., Richter C., 2012. Measuring the impact of temperature changes on the wine production in the Douro Region using the short time fourier transform. Int. J. Biometeorol., 56(2), 357–370. [CrossRef] [PubMed] [Google Scholar]
  • Dalla Marta A., Grifoni D., Mancini M., Storchi P., Zipoli G., Orlandini S., 2010. Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. J. Agric. Sci., 148, 657–666. [CrossRef] [Google Scholar]
  • de Cortazar-Atauri I.G., 2006. Adaptation du modèle STICS à la vigne (Vitis vinifera L.). Utilisation dans le cadre d’une étude d’impact du changement climatique à l’échelle de la France. 292 p. PhD thesis, Montpellier. [Google Scholar]
  • de Cortazar-Atauri I.G., Brisson N., Gaudillere J.P., 2009. Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). Int. J. Biometeorol., 53(4), 317–326. [CrossRef] [PubMed] [Google Scholar]
  • de Noblet-Ducoudre N., Gervois S., Ciais P., Viovy N., Brisson N., Seguin B., Perrier A., 2004. Coupling the Soil-Vegetation- Atmosphere-Transfer Scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie, 24(6–7), 397–407. [CrossRef] [Google Scholar]
  • de Orduna R.M., 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int., 43(7), 1844–1855. [CrossRef] [Google Scholar]
  • Debaeke P., 2004. Scenario analysis for cereal management in water-limited conditions by the means of a crop simulation model (STICS). Agronomie, 24(6–7), 315–326. [CrossRef] [Google Scholar]
  • Duchene E., Huard F., Dumas V., Schneider C., Merdinoglu D., 2010. The challenge of adapting grapevine varieties to climate change. Clim. Res., 41(3), 193–204. [CrossRef] [Google Scholar]
  • Duchene E., Schneider C., 2005. Grapevine and climatic changes: a glance at the situation in Alsace. Agron. Sustain. Dev., 25(1), 93–99. [CrossRef] [EDP Sciences] [Google Scholar]
  • During H., 1986. Testing for drought tolerance in grapevine scions. Angew. Bot., 60(1–2), 103–111. [Google Scholar]
  • FAO, 2006. World reference base for soil resources 2006, a framework for international classification, correlation and communication. World soil resources reports 103 p. Food and Agriculture Organization of the United Nations, Rome. [Google Scholar]
  • Ferreira M.I., Silvestre J., Conceição N., Malheiro A.C., 2012. Crop and stress coefficients in rainfed and deficit irrigation vineyards using sap flow techniques. Irrig. Sci., 30(5), 433–447. [CrossRef] [Google Scholar]
  • Field S.K., Smith J.P., Holzapfel B.P., Hardie W.J., Emery R.J.N., 2009. Grapevine response to soil temperature: xylem cytokinins and carbohydrate reserve mobilization from budbreak to anthesis. Am. J. Enol. Vitic., 60(2), 164–172. [Google Scholar]
  • Fila G., Di Lena B., Gardiman M., Storchi P., Tornasi D., Silvestroni O., Pitacco A., 2012. Calibration and validation of grapevine budburst models using growth-room experiments as data source. Agric. For. Meteorol., 160, 69–79. [CrossRef] [Google Scholar]
  • Fraga H., Amraoui M., Malheiro A.C., Moutinho-Pereira J., Eiras-Dias J., Silvestre J., Santos J.A., 2014a. Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. Eur. J. Remote Sens., 47, 753–771. [CrossRef] [Google Scholar]
  • Fraga H., Costa R., Moutinho-Pereira J., Correia C.M., Dinis L.-T., Gonçalves I., Silvestre J., Eiras-Dias J., Malheiro A.C., Santos J.A., 2015. Modeling phenology, water status, and yield components of three portuguese grapevines using the STICS crop model. Am. J. Enol. Vitic.: doi: 10.5344/ajev.2015.15031. [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Cardoso R.M., Soares P.M.M., Cancela J.J., Pinto J.G., Santos J.A., 2014b. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions. PLoS One, 9(9), e108078. [CrossRef] [PubMed] [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Jones G.V., Alves F., Pinto J.G., Santos J.A., 2014c. Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. Reg. Environ. Change, 14(1), 295–306. [CrossRef] [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A., 2013. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int. J. Biometeorol., 57(6), 909–925. [CrossRef] [PubMed] [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A., 2014d. Climate factors driving wine production in the Portuguese Minho region. Agric. For. Meteorol., 185, 26–36. [CrossRef] [Google Scholar]
  • Fraga H., Santos J.A., Malheiro A.C., Moutinho-Pereira J., 2012. Climate change projections for the Portuguese viticulture using a multi-model ensemble. Ciência Téc. Vitiv., 27(1), 39–48. [Google Scholar]
  • Gaudin R., Kansou K., Payan J.C., Pellegrino A., Gary C., 2014. A water stress index based on water balance modelling for discrimination of grapevine quality and yield. J. Int. Sci. Vigne Vin, 48(1), 1–9. [Google Scholar]
  • Godwin D., White B., Sommer K., Walker R., Goodwin I., Clingeleffer P., 2002. VineLOGIC e a model of grapevine growth, development and water use. In: Managing Water. 46–50. Dundon C., Hamilton R., Johnstone R., Partridge S. (eds.), Australian Society of Viticulture and Oenology Inc, Adelaide. [Google Scholar]
  • Gonzalez-Camacho J.M., Mailhol J.C., Ruget F., 2008. Local impact of increasing CO2 in the atmosphere on maize crop water productivity in the Drome valley, France. Irrig. Drainage, 57(2), 229–243. [CrossRef] [Google Scholar]
  • Gouveia C., Liberato M.L.R., DaCamara C.C., Trigo R.M., Ramos A.M., 2011. Modelling past and future wine production in the Portuguese Douro Valley. Clim. Res., 48(2), 349–362. [CrossRef] [Google Scholar]
  • Hardie W.J., Considine J.A., 1976. Response of grapes to waterdeficit stress in particular stages of development. Am. J. Enol. Vitic., 27(2), 55–61. [Google Scholar]
  • Hoppmann D., Berkelmann-Loehnertz B., 2000. Prognosis of phenological stages of Vitis vinifera (cv. Riesling) for optimizing pest management*. EPPO Bulletin, 30(1), 121–126. [CrossRef] [Google Scholar]
  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Summary for Policymakers. Working Group I Contribution to the IPCC Fifth Assessment Report. [Google Scholar]
  • IVV, 2013. Vinhos e Aguardentes de Portugal, Anuário 2013. 236 p. Instituto da Vinha e do Vinho, Lisboa: [Google Scholar]
  • Jackson D.I., Lombard P.B., 1993. Environmental and management-practices affecting grape composition and wine quality - a review. Am. J. Enol. Vitic., 44(4), 409–430. [Google Scholar]
  • Jego G., Martinez M., Antiguadad I., Launay M., Sanchez-Perez J.M., Justes E., 2008. Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil-crop model. Sci. Total Environ., 394(2–3), 207–221. [CrossRef] [PubMed] [Google Scholar]
  • Jones G.V., Davis R.E., 2000. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic., 51(3), 249–261. [Google Scholar]
  • Jones G.V., Snead N., Nelson P., 2004. Geology and wine 8. Modeling viticultural landscapes: A GIS analysis of the terroir potential in the Umpqua Valley of Oregon. Geosci. Can., 31(4), 167–178. [Google Scholar]
  • Jones G.V., White M.A., Cooper O.R., Storchmann K., 2005. Climate change and global wine quality. Clim. Change, 73(3), 319–343. [Google Scholar]
  • Juin S., Brisson N., Clastre P., Grand P., 2004. Impact of global warming on the growing cycles of three forage systems in upland areas of southeastern France. Agronomie, 24(6–7), 327–337. [CrossRef] [Google Scholar]
  • Katerji N., Mastrorilli M., Cherni H.E., 2010. Effects of corn deficit irrigation and soil properties on water use efficiency. A 25- year analysis of a Mediterranean environment using the STICS model. Eur. J. Agron., 32(2), 177–185. [CrossRef] [Google Scholar]
  • Kenny G.J., Harrison P.A., 1992. The effects of climate variability and change on grape suitability in Europe. J. Wine Res., 3(3), 163–183. [CrossRef] [Google Scholar]
  • Kose B., 2014. Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. varieties in the maritime climate of Samsun in Turkey’s Black Sea region. S. Afr. J. Enol. Vitic., 35(1), 90–102. [Google Scholar]
  • Koundouras S., van Leeuwen C., Seguin G., Glories Y., 1999. Influence of water status on vine vegetative growth, berry ripening and wine characteristics in mediterranean zone (example of Nemea, Greece, variety Saint-George, 1997). J. Int. Sci. Vigne Vin, 33, 149–160. [Google Scholar]
  • Kwon E.Y., Jung J.E., Chung U., Yun J.I., Park H.S., 2008. Using thermal time to simulate dormancy depth and bud-burst of vineyards in Korea for the twentieth century. J. Appl. Meteorol. Clim., 47(6), 1792–1801. [CrossRef] [Google Scholar]
  • Lebon E., Dumas V., Pieri P., Schultz H.R., 2003. Modelling the seasonal dynamics of the soil water balance of vineyards. Funct. Plant Biol., 30(6), 699–710. [CrossRef] [PubMed] [Google Scholar]
  • Ledoux E., Gomez E., Monget J.M., Viavattene C., Viennot P., Ducharne A., Benoit M., Mignolet C., Schott C., Mary B., 2007. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Sci. Total Environ., 375(1–3), 33–47. [CrossRef] [PubMed] [Google Scholar]
  • Leroy P., Smits N., Cartolaro P., Deliere L., Goutouly J.P., Raynal M., Ugaglia A.A., 2013. A bioeconomic model of downy mildew damage on grapevine for evaluation of control strategies. Crop Prot., 53, 58–71. [CrossRef] [Google Scholar]
  • Lobell D.B., Burke M.B., 2010. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol., 150(11), 1443–1452. [CrossRef] [Google Scholar]
  • Lobell D.B., Field C.B., Cahill K.N., Bonfils C., 2006. Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agric. For. Meteorol., 141(2–4), 208–218. [CrossRef] [Google Scholar]
  • Lopes J., Eiras-Dias J.E., Abreu F., Climaco P., Cunha J.P., Silvestre J., 2008. Thermal requirements, duration and precocity of phenological stages of grapevine cultivars of the Portuguese collection. Ciência Téc. Vitiv., 23(1), 61–71. [Google Scholar]
  • Lopes C., Pinto P.A., 2005. Easy and accurate estimation of grapevine leaf area with simple mathematical models. Vitis, 44(2), 55–61. [Google Scholar]
  • Mackenzie D.E., Christy A.G., 2005. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Wat. Sci. Technol., 51(1), 27–37. [Google Scholar]
  • Magalhães N., 2008. Tratado de viticultura: a videira, a vinha e o terroir. 605 p. Chaves Ferreira, Lisboa. [Google Scholar]
  • Malheiro A.C., Campos R., Fraga H., Eiras-Dias J., Silvestre J., Santos J.A., 2013. Winegrape phenology and temperature relationships in the Lisbon Wine Region, Portugal. J. Int. Sci. Vigne Vin, 47(4), 287–299. [Google Scholar]
  • Malheiro A.C., Santos J.A., Fraga H., Pinto J.G., 2010. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res., 43(3), 163–177. [CrossRef] [Google Scholar]
  • McCullagh P., 2002. What is a statistical model? Ann. Stat., 30(5), 1225–1267. [CrossRef] [Google Scholar]
  • Molitor D., Caffarra A., Sinigoj P., Pertot I., Hoffmann L., Junk J., 2014. Late frost damage risk for viticulture under future climate conditions: a case study for the Luxembourgish winegrowing region. Aust. J. Grape Wine R., 20(1), 160–168. [CrossRef] [Google Scholar]
  • Moncur M.W., Rattigan K., Mackenzie D.H., Mcintyre G.N., 1989. Base Temperatures for Budbreak and Leaf Appearance of Grapevines. Am. J. Enol. Vitic., 40(1), 21–26. [Google Scholar]
  • Moriondo M., Bindi M., Fagarazzi C., Ferrise R., Trombi G., 2011. Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg. Environ. Change, 11(3), 553–567. [CrossRef] [Google Scholar]
  • Moriondo M., Ferrise R., Trombi G., Brilli L., Dibari C., Bindi M., 2015. Modelling olive trees and grapevines in a changing climate. Environ. Model. Software: 1–15. http://dx.doi.org/10.1016/j.envsoft.2014.12.016 [Google Scholar]
  • Morlat R., Jacquet A., 2003. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am. J. Enol. Vitic., 54(1), 1–7. [Google Scholar]
  • Muresu M.P., 2012. Impacts of climate change on grapevine: the use of crop model WinStics to estimate potential impacts on grapevine(Vitis vinifera L.) in Sardinia scale. 137 p. PhD Thesis, Universita degli studi di Sassari. [Google Scholar]
  • Nemani R.R., White M.A., Cayan D.R., Jones G.V., Running S.W., Coughlan J.C., Peterson D.L., 2001. Asymmetric warming over coastal California and its impact on the premium wine industry. Clim. Res., 19(1), 25–34. [CrossRef] [EDP Sciences] [Google Scholar]
  • Nendel C., Kersebaum K.C., 2004. A simple model approach to simulate nitrogen dynamics in vineyard soils. Ecol. Model, 177(1–2), 1–15. [CrossRef] [Google Scholar]
  • Neumann P.A., Matzarakis A., 2011. Viticulture in southwest Germany under climate change conditions. Clim. Res., 47(3), 161–169. [CrossRef] [Google Scholar]
  • Nicholas K.A., Matthews M.A., Lobell D.B., Willits N.H., Field C.B., 2011. Effect of vineyard-scale climate variability on Pinot noir phenolic composition. Agric. For. Meteorol., 151(12), 1556–1567. [CrossRef] [Google Scholar]
  • OIV, 2010. Resolution OIV/VITI 333/2010, definition of vitivinicultural “Terroir”, Tbilisi, 25th June 2010. [Google Scholar]
  • OIV, 2013. Statistical Report on World Vitiviniculture. 32 p. OIV, Paris. [Google Scholar]
  • Oliveira M., 1998. Calculation of budbreak and flowering base temperatures for Vitis vinifera cv. Touriga Francesa in the Douro Region of Portugal. Am. J. Enol. Vitic., 49(1), 74–78. [Google Scholar]
  • Parker A., de Cortázar-Atauri I.G., Chuine I., Barbeau G., Bois B., Boursiquot J.-M., Cahurel J.-Y., Claverie M., Dufourcq T., Gény L., Guimberteau G., Hofmann R.W., Jacquet O., Lacombe T., Monamy C., Ojeda H., Panigai L., Payan J.-C., Lovelle B.R., Rouchaud E., Schneider C., Spring J.-L., Storchi P., Tomasi D., Trambouze W., Trought M., van Leeuwen C., 2013. Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L. Agric. For. Meteorol., 180, 249–264. [CrossRef] [Google Scholar]
  • Parker A.K., de Cortazar-Atauri I.G., van Leeuwen C., Chuine I., 2011. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust. J. Grape Wine R., 17(2), 206–216. [CrossRef] [Google Scholar]
  • Paz J.O., Fraisse C.W., Hatch L.U., Garcia A.Y.G., Guerra L.C., Uryasev O., Bellow J.G., Jones J.W., Hoogenboom G., 2007. Development of an ENSO-based irrigation decision support tool for peanut production in the southeastern US. Comput. Electron. Agric., 55(1), 28–35. [CrossRef] [Google Scholar]
  • Pellegrino A., Clingeleffer P., Cooley N., Walker R., 2014. Management practices impact vine carbohydrate status to a greater extent than vine productivity. Front. Plant Sci., 5, 283. [CrossRef] [PubMed] [Google Scholar]
  • Pellegrino A., Gozé E., Lebon E., Wery J., 2006. A model-based diagnosis tool to evaluate the water stress experienced by grapevine in field sites. Eur. J. Agron., 25(1), 49–59. [CrossRef] [Google Scholar]
  • Pellegrino A., Lebon E., Simonneau T., Wery J., 2005. Towards a simple indicator of water stress in grapevine (Vitis vinifera L.) based on the differential sensitivities of vegetative growth components. Aust. J. Grape Wine R., 11(3), 306–315. [CrossRef] [Google Scholar]
  • Pinto P.A., 2013. Agricultura e incerteza climática, Personal comunication, Seminar: Alterações climáticas em viticultura – SIAMVITI. [Google Scholar]
  • Poni S., Palliotti A., Bernizzoni F., 2006. Calibration and evaluation of a STELLA software-based daily CO2 balance model in Vitis vinifera L. J. Am. Soc. Hortic. Sci., 131(2), 273–283. [Google Scholar]
  • Quiroga S., Iglesias A., 2009. A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain. Agric. Sys., 101(1–2), 91–100. [CrossRef] [Google Scholar]
  • Real A.C., Borges J., Cabral J.S., Jones G.V., 2014. Partitioning the grapevine growing season in the Douro Valley of Portugal: accumulated heat better than calendar dates. Int. J. Biometeorol.: 1–15. [PubMed] [Google Scholar]
  • Rodrigues A., Marcal A.S., Cunha M., 2013. Monitoring vegetation dynamics inferred by satellite data using the PhenoSat tool. IEEE T. Geosci. Remote Sens., 51(4), 2096–2104. [CrossRef] [Google Scholar]
  • Rodriguez J.C., Duchemin B., Hadria R., Watts C., Garatuza J., Chehbouni A., Khabba S., Boulet G., Palacios E., Lahrouni A., 2004. Wheat yield estimation using remote sensing and the STICS model in the semiarid Yaqui valley, Mexico. Agronomie, 24(6–7), 295–304. [CrossRef] [Google Scholar]
  • Roux S., Brun F., Wallach D., 2014. Combining input uncertainty and residual error in crop model predictions: A case study on vineyards. Eur. J. Agron., 52, 191–197. [CrossRef] [Google Scholar]
  • Rovira-Más F., Sáiz-Rubio V., 2013. Crop biometric maps: the key to prediction. Sensors, 13(9), 12698–12743. [CrossRef] [Google Scholar]
  • Ruiz-Ramos M., Gabriel J.L., Vazquez N., Quemada M., 2011. Evaluation of nitrate leaching in a vulnerable zone: effect of irrigation water and organic manure application. Span. J. Agric. Res., 9(3), 924–937. [CrossRef] [Google Scholar]
  • Salinari F., Mariani L., Poni S., Cola G., Bettati T., Diago M.P., Tardaguila J., Oliveira M., 2014. Development of a water stress alert system embedded in a DSS for integrated vineyard management. In: VII International Symposium on Irrigation of Horticultural Crops, 1038, 565–572. [CrossRef] [Google Scholar]
  • Santos J.A., Grätsch S.D., Karremann M.K., Jones G.V., Pinto J.G., 2013. Ensemble projections for wine production in the Douro Valley of Portugal. Clim. Change, 117(1–2), 211–225. [Google Scholar]
  • Santos J.A., Malheiro A.C., Karremann M.K., Pinto J.G., 2011. Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. Int. J. Biometeorol., 55(2), 119–131. [Google Scholar]
  • Santos J.A., Malheiro A.C., Pinto J.G., Jones G.V., 2012. Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Clim. Res., 51(1), 89–103. [CrossRef] [Google Scholar]
  • Scaglione G., Pasquarella C., Federico R., Bonfante A., Terribile F., 2008. A multidisciplinary approach to grapevine zoning using GIS technology: An example of thermal data elaboration. Vitis, 47(2), 131–132. [Google Scholar]
  • Schreiner R.P., Lee J., 2014. Effects of post-veraison water deficit on ‘pinot noir’ yield and nutrient status in leaves, clusters, and musts. HortScience, 49(10), 1335–1340. [Google Scholar]
  • Schultz H.R., 1992. An empirical-model for the simulation of leaf appearance and leaf-area development of primary shoots of several grapevine (Vitis vinifera L.) canopy-systems. Sci. Hort., 52(3), 179–200. [CrossRef] [Google Scholar]
  • Semenov M.A., Doblas-Reyes F.J., 2007. Utility of dynamical seasonal forecasts in predicting crop yield. Clim. Res., 34(1), 71–81. [CrossRef] [Google Scholar]
  • Shin D.W., Baigorria G.A., Lim Y.-K., Cocke S., LaRow T.E., O’Brien J.J., Jones J.W., 2009. Assessing crop yield simulations with various seasonal climate data. Science and Technology Infusion Climate Bulletin. NOAA’s National Weather Service. [Google Scholar]
  • Stock M., Gerstengarbe F.W., Kartschall T., Werner P.C., 2005. Reliability of climate change impact assessments for viticulture. Acta Hortic., 689, 29–39. [Google Scholar]
  • Storchi P., Costantini E.A.C., Bucelli P., 2005. The influence of climate and soil on viticultural and enological parameters of ‘Sangiovese’ grapevines under non-irrigated conditions. In: Proceedings of the Seventh International Symposium on Grapevine Physiology and Biotechnology, 689, 333–340. [Google Scholar]
  • Tomasi D., Jones G.V., Giust M., Lovat L., Gaiotti F., 2011. Grapevine phenology and climate change: relationships and trends in the Veneto Region of Italy for 1964–2009. Am. J. Enol. Vitic., 62(3), 329–339. [CrossRef] [Google Scholar]
  • Tournebize J., Kao C., Nikolic N., Zimmer D., 2004. Adaptation of the STICS model to subsurface drained soils. Agronomie, 24(6–7), 305–313. [CrossRef] [Google Scholar]
  • Trought M.C.T., Howell G.S., Cherry N., 1999. Practical considerations for reducing frost damage in vineyards. Report to New Zealand Winegrowers, New Zealand Winegrowers, Auckland. [Google Scholar]
  • Unwin P.T.H., 1996. Wine & The Vine. 415 p. Routledge, London. [Google Scholar]
  • Valade A., Vuichard N., Ciais P., Ruget F., Viovy N., Gabrielle B., Huth N., Martine J.F., 2014. ORCHIDEE-STICS, a process-based model of sugarcane biomass production: calibration of model parameters governing phenology. Gcb. Bioenergy, 6(5), 606–620. [CrossRef] [Google Scholar]
  • Valdes-Gomez H., Brisson N., Acevedo-Opazo C., Ortega-Farias S., Gary C., 2011. Modelling the effects of Nino and Nina events on water balance of grapevine (‘Cabernet Sauvignon’) in Central Valley of Chile. Vi International Symposium on Irrigation of Horticultural Crops, 889, 159–166. [CrossRef] [Google Scholar]
  • Valdes-Gomez H., Celette F., de Cortazar-Atauri I.G., Jara-Rojas F., Ortega-Farias S., Gary C., 2009. Modelling soil water content and grapevine growth and development with the Stics crop-soil model under two different water management strategies. J. Int. Sci. Vigne Vin, 43(1), 13–28. [Google Scholar]
  • van Leeuwen C., Friant P., Choné X., Tregoat O., Koundouras S., Dubordieu D., 2004. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic., 55(3), 207–217. [Google Scholar]
  • van Leeuwen C., Garnier C., Agut C., Baculat B., Barbeau G., Besnard E., Bois B., Boursiquot J.-M., Chuine I., Dessup T., Dufourcq T., Garcia-Cortazar I., Marguerit E., Monamy C., Koundouras S., Payan J.-C., Parker A., Renouf V., Rodriguez-Lovelle B., Roby J.-P., Tonietto J., Trambouze W., 2008. Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate. In: Proceedings of the 7th International Terroir Congress, 222–227. [Google Scholar]
  • van Vaudour E., Carey V.A., Gilliot J.M., 2010. Digital zoning of South African viticultural terroirs using bootstrapped decision trees on morphometric data and multitemporal SPOT images. Remote Sens. Environ., 114(12), 2940–2950. [CrossRef] [Google Scholar]
  • Webb L.B., Whetton P.H., Barlow E.W.R., 2007. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine R., 13(3), 165–175. [CrossRef] [Google Scholar]
  • Webb L.B., Whetton P.H., Barlow E.W.R., 2008a. Climate change and winegrape quality in Australia. Clim. Res., 36, 99–111. [CrossRef] [Google Scholar]
  • Webb L.B., Whetton P.H., Barlow E.W.R., 2008b. Modelling the relationship between climate, winegrape price and winegrape quality in Australia. Clim. Res., 36(2), 89–98. [CrossRef] [Google Scholar]
  • Williams D.W., Williams L.E., Barnett W.W., Kelley K.M., McKenry M.V., 1985. Validation of a model for the growth and development of the Thompson seedless grapevine.1. Vegetative growth and fruit yield. Am. J. Enol. Vitic., 36(4), 275–282. [Google Scholar]
  • Winkler A.J., 1974. General viticulture, University of California Press, California. [Google Scholar]
  • Yau I.H., Davenport J.R., Rupp R.A., 2013. Characterizing inland Pacific Northwest American viticultural areas with geospatial data. PLoS One, 8(4), e61994. [CrossRef] [PubMed] [Google Scholar]
  • Zsofi Z., Toth E., Rusjan D., Balo B., 2011. Terroir aspects of grape quality in a cool climate wine region: Relationship between water deficit, vegetative growth and berry sugar concentration. Sci. Hort., 127(4), 494–499. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.