Open Access
Issue |
Ciência Téc. Vitiv.
Volume 39, Number 2, 2024
|
|
---|---|---|
Page(s) | 64 - 73 | |
DOI | https://doi.org/10.1051/ctv/ctv2024390264 | |
Published online | 22 October 2024 |
- Ayres M.R., Billones-Baaijens R., Savocchia S., Scott E.S., Sosnowski M.R., 2022. Critical timing of fungicide application for pruning wound protection to control grapevine trunk diseases. Aust. J. Grape Wine Rev. 28, 70–74. [CrossRef] [Google Scholar]
- Baumgartner K., Fujiyoshi P.T., Travadon R., Castlebury L.A., Wilcox W.F., Rolshausen P.E., 2013. Characterization of Species of Diaporthe from Wood Cankers of Grape in Eastern North American Vineyards. Plant Dis. 97, 912–920. [Google Scholar]
- Bertsch C., Ramírez-Suero M., Magnin-Robert M., Larignon P., Chong J., Fontaine F., 2013. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathol. 62, 243–265. [Google Scholar]
- Bohm J., Antunes M., Lehman J., Miguel V., Eiras-Dias J.E., Bombín J., Santa Maria F., Organero G., 2011. Atlas das castas da Península Ibérica. 236 p. Dinalivro, Lisbon, Portugal. [Google Scholar]
- Bugaret Y., 1997. Méthode 051 - Méthode d’étude de l’efficacité pratique de fongicides destines a la lutte contre L’excoriose de la vigne (Phomopsis viticola Sacc.). Available at https://www.vegephyl.fr/ceb/ (accessed on 10.12.2023). [Google Scholar]
- Carro-Huerga G., Mayo-Prieto S., Rodríguez-González Á., Álvarez-García S., Gutiérrez S., Casquero P.A., 2021. The influence of temperature on the growth, sporulation, colonization, and survival of Trichoderma spp. in grapevine pruning wounds. Agronomy, 11, 1771. [CrossRef] [Google Scholar]
- Eiras-Dias J.E., Faustino R., Clímaco P., Fernandes P., Cruz A., Cunha J., Veloso M., Castro R., 2011. Catálogo das Castas para Vinho Cultivadas em Portugal. Vol. I. Instituto da Vinha e do Vinho, I.P., Ed. Chaves Ferreira – Publicações, SA., Lisbon. [Google Scholar]
- EPPO, 1996. Efficacy evaluation of fungicides Phomopsis viticola. Available at : https://www.eppo.int/RESOURCES/eppo_standards (accessed on 10.12.2023). [Google Scholar]
- Gomes R.R., Glienke C., Videira S.I.R., Lombard L., Groenewald J.Z., Crous P.W., 2013. Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Pers.: Mol. Phylogeny Evol. Fungi 31, 1–41. [Google Scholar]
- Gramaje D., Urbez-Torres J.R., Sosnowski M.R., 2018. Managing Grapevine Trunk Diseases with respect to etiology and epidemiology: Current Strategies and Future Prospects. Plant Dis. 102, 12–39. [CrossRef] [PubMed] [Google Scholar]
- Guarnaccia V, Groenewald J, Woodhall J, Armengol J, Cinelli T, Eichmeier A, Ezra D, Fontaine F, Gramaje D, Gutierrez-Aguirregabiria A, Kaliterna J, Kiss L, Larignon P, Luque J, Mugnai L, Naor V, Raposo R, Sándor E, Váczy K, Crous P., 2018. Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Pers.: Mol. Phylogeny Evol. Fungi, 40, 135–153. [Google Scholar]
- Köhl J., Kolnaar R., Ravensberg W.J., 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci., 10, 454982. [Google Scholar]
- Kotze C., Van Niekerk J., Mostert L., Halleen F., Fourie P.H., 2011. Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol. Mediterr., 50, S247–S263. [Google Scholar]
- Król E., 2004. Trichoderma spp. and other microorganisms in the control of Phomopsis viticola on grapevine canes. Phytopathol. Pol., 31, 25–31. [Google Scholar]
- Leal C., Bujanda R., López-Manzanares B., Ojeda S., Berbegal M., Gramaje D., 2024. Evaluating treatments for the protection of grapevine pruning wounds from natural infection by trunk disease fungi. Plant Dis. Available at : https://doi.org/10.1094/PDIS-02-24-0473-RE (accessed on 20.09.2024). [Google Scholar]
- Magalhães N., 2015. Tratado de viticultura. A videira, a vinha e o terroir. 607 p. 2.ª ed. Esfera Poética, Portugal. [Google Scholar]
- Martínez-Diz M. del P., Eichmeier A., Spetik M., Bujanda R., Díaz-Fernández Á., Gramaje D., 2020. Grapevine pruning time affects natural wound colonization by wood-invading fungi. Fungal Ecol., 48, 100994. [CrossRef] [Google Scholar]
- Martínez-Diz M., Díaz-Losada E., Andrés-Sodupe M., Bujanda R., Maldonado-González M.M., Gramaje D., 2021. Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine. Pest Manag. Sci., 77, 697–708. [Google Scholar]
- Mounier, E., F. Boulisset, F. Cortes, and M. Cadiou. 2016. Esquive WP limits development of grapevine trunk diseases and safeguards the production potential of vineyards. In: Biocontrol of Major Grapevine Diseases: LeadingResearch , 160–170. S. Compant and F. Mathieu, eds. CABI, Wallingford, U.K. [CrossRef] [Google Scholar]
- Mugnai L., Graniti A., Surico G., 1999. Esca (Black Measles) and Brown Wood-Streaking: Two Old and Elusive Diseases of Grapevines. Plant Dis., 83, 404–418. [Google Scholar]
- Mutawila C., Halleen F., Mostert L., 2015. Development of benzimidazole resistant Trichoderma strains for the integration of chemical and biocontrol methods of grapevine pruning wound protection. BioControl, 60, 387–399. [CrossRef] [Google Scholar]
- Mutawila C., Halleen F., Mostert L., 2016a. Optimisation of time of application of Trichoderma biocontrol agents for protection of grapevine pruning wounds. Aust. J. Grape Wine Res. 22, 279–287. [CrossRef] [Google Scholar]
- Mutawila C., Vinale F., Halleen F., Lorito M., Mostert L., 2016b. Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Patol., 65, 104–113. [Google Scholar]
- Pereira A., Rego C., Oliveira H., Portugal J., Sofia J., Bugaret Y., Vidal R., Rodrigues R., 2012. Manual Bayvitis: a fitossanidade da videira. 331 p., Bayer CropScience, Lisbon, Portugal. [Google Scholar]
- Pertot I., Prodorutti D., Colombini A., Pasini L., 2016. Trichoderma atroviride SC1 prevents Phaeomoniella chlamydospora and Phaeoacremonium aleophilum infection of grapevine plants during the grafting process in nurseries. BioControl, 61, 257–267. [CrossRef] [Google Scholar]
- Reis, P., Letousey, P., and Rego, C., 2017. Trichoderma atroviride strain I-1237 protects pruning wounds against grapevine wood pathogens. Phytopathol. Mediterr., 56, 580. [Google Scholar]
- SIFITO, 2023. Available at https://sifito.dgav.pt/divulgacao/usos (accessed on 09.12.2023). [Google Scholar]
- SNAA, 2023. Available at: https://snaa.dgav.pt/ (accessed on 22.11.2023). [Google Scholar]
- Soares B., Barbosa C., Oliveira M.J., 2023. Chitosan application towards the improvement of grapevine performance and wine quality. Ciência Tec. Vitiv., 38, 43–59. [Google Scholar]
- Sofia J., Nascimento T., Gonçalves M.T., Rego C., 2013. Contribution for a better understanding of grapevine fungal trunk diseases in the Portuguese Dão wine region. Phytopathol. Mediterr., 52, 324–334. [Google Scholar]
- Sofia J., Mota M., Gonçalves M.T., Rego C., 2018. Response of four Portuguese grapevine cultivars to infection by Phaeomoniella chlamydospora. Phytopathol. Mediterr., 57, 506–518. [Google Scholar]
- Songy A., Fernandez O., Clément C., Larignon P., Fontaine F., 2019. Grapevine trunk diseases under thermal and water stresses. Planta, 249, 1655–1679. [Google Scholar]
- Tomaz I.L., Rego C., 1990. Fungos do complexo responsável pelo declínio das videiras em Portugal. Vida Rur. 1493, 12‒20. [Google Scholar]
- Urbez-Torres J.R., Peduto Hand F., Smith R.J., Gubler W.D., 2013. Phomopsis dieback: a grapevine trunk disease caused by Phomopsis viticola in California. Plant Dis., 97, 1571–1579. [Google Scholar]
- Van Niekerk J.M., Groenewald J.Z., Farr D.F., Fourie P.H., Halleen F., Crous P.W., 2005. Reassessment of Phomopsis species on grapevines. Australas. Plant Pathol., 34, 27–39. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.