Open Access
Issue
Ciência Téc. Vitiv.
Volume 33, Number 1, 2018
Page(s) 66 - 77
DOI https://doi.org/10.1051/ctv/20183301066
Published online 19 June 2018
  • Alba V., Bergamini C., Cardone M.F., Gasparro M., Perniola R., Genghi R., Antonacci D., 2014. Morphological variability in leaves and molecular characterization of novel table grape candidate cultivars (Vitis vinifera L.). Mol. Biotechnol., 56, 557-570. [CrossRef] [PubMed] [Google Scholar]
  • Aradhya M., Wang Y., Walker M.A., Prins B.H., Koehmstedt A.M., Velasco D., Gerrath J.M., Dangl G.S., Preece J.E., 2003. Genetic diversity, structure, and patterns of differentiation in the genus Vitis. Plant Syst. Evol., 299, 317-330. [CrossRef] [Google Scholar]
  • Azuma A., Kobayashi S., Goto-Yamamoto N., Shiraishi M., Mitani N., Yakushiji H., Koshita Y., 2009. Color recovery in berries of grape (Vitis vinifera L.) ‘Benitaka’, a bud sport of ’Italia’, is caused by a novel allele at the VvmybA1 locus. Plant Sci., 176, 470-478. [CrossRef] [PubMed] [Google Scholar]
  • Bowers J.E., Boursiquot J.M., This P., Chu K., Johansson H., Meredith C.P., 1999. Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science, 285, 1562-1565. [CrossRef] [Google Scholar]
  • Bowers J.E., Dangl G.S., Vignani R., Meredith C.P., 1996. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 39, 628-633. [CrossRef] [PubMed] [Google Scholar]
  • Camargo U.A., 1994. Uvas do Brasil. Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Uva e Vinho, Brasília, 90 p. [Google Scholar]
  • Camargo U.A., 1998. Cultivares para a viticultura tropical no Brasil. Informe Agropecuário – EPAMIG, 19, 15-19. [Google Scholar]
  • Carimi F., Mercati F., Abbate L., Sunseri F., 2010. Microsatellite analyses for evaluation of genetic diversity among Sicilian grapevine cultivars. Genet. Resour. Crop Evol., 57, 703-719. [CrossRef] [Google Scholar]
  • Crespan M., 2004. Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theor. Appl. Genet., 108, 231-237. [CrossRef] [PubMed] [Google Scholar]
  • Di Gaspero G., Cipriani G., Marrazzo M.T., Andreetta D., Castro M.J.P., Peterlunger E., Testolin R., 2005. Isolation of (AC)nmicrosatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection. Mol. Breed., 15, 11-20. [CrossRef] [Google Scholar]
  • Di Vecchi-Staraz M., Lucou V., Bruno G., 2009. Low level of pollen-mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. ssp silvestris. J. Heredity, 100, 66-75. [CrossRef] [Google Scholar]
  • Don R.H., Cox P.T., Wainwright B.J., Baker K., Mattick J.S., 1991. “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucl. Acid Res., 19, 4008. [CrossRef] [Google Scholar]
  • Doulati-Baneha H., Mohammadib S.A., Labra M., 2013. Genetic structure and diversity analysis in Vitis vinifera L. cultivars from Iran using SSR markers. Sci. Hortic., 160, 29-36. [Google Scholar]
  • Emanuelli F., Lorenzi S., Grzeskowiak L., Catalano V., Stefanini M., Troggio M., Myles S., Martinez-Zapater J.M., Zyprian E., Moreira F.M., Grando M.S., 2013. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol., 13, 39. [CrossRef] [PubMed] [Google Scholar]
  • Fernández M.P., Nuñez Y., Pons F., Hernáiz S., Gallego F.J., Ibáñez J., 2008. Characterization of sequence polymorphisms from microsatellite flanking regions in Vitis spp. Mol. Breed., 22, 455-465. [CrossRef] [Google Scholar]
  • Fernández-González M., Mena A., Izquierdo P.J., Martínez J., 2007. Genetic characterization of grapevine (Vitis vinifera L.) cultivars from Castilla La Mancha (Spain) using microsatellite markers. Vitis, 46, 126-130. [Google Scholar]
  • Hocquigny S., Pelsy F., Dumas V., Kindt S., Héloir M.C., Merdinoglu D., 2004. Diversification within grapevine cultivars goes through chimeric states. Genome, 47, 579–589. [CrossRef] [PubMed] [Google Scholar]
  • Jombart T., 2008. Adeget: a R package for multivariate analysis of genetic markers. Bioinformatics, 24, 1403-1405. [CrossRef] [PubMed] [Google Scholar]
  • Kishino A.Y., Mashima M., 1980. Uva Vitis vinifera L. In: Fundação Instituto Agronômico do Paraná. Manual Agropecuário para o Paraná, 139-177. Londrina, PR, Brazil. [Google Scholar]
  • Lopes M.S., Rodrigues dos Santos M., Eiras Dias J.E., Mendonça D., da Câmara Machado A., 2006. Discrimination of Portuguese grapevines based on microsatellite markers. J. Biotechn., 127, 34-44. [CrossRef] [PubMed] [Google Scholar]
  • Lopes M.S., Sefc K.M., Eiras Dias J.E., Steinkellner H., Câmara Machado A., 1999. The use of microsatellites for germplasm management in a Portuguese grapevine collection. Theor. Appl. Genet., 99, 733-739. [CrossRef] [PubMed] [Google Scholar]
  • Maia S.H.Z., Mangolin C.A., Oliveira-Collet S.A., Machado M.F.P.S., 2009. Genetic diversity in somatic mutants of grape (Vitis vinifera L.) cultivar Italia based on random amplified polymorphic DNA. Genet. Mol. Res., 8, 28-38. [CrossRef] [PubMed] [Google Scholar]
  • Martín J.P., Borrego J., Cabello F., Ortiz J.M., 2003. Characterization of Spanish grapevine cultivar diversity using sequence-tagged microsatellite site markers. Genome, 46, 10-18. [CrossRef] [PubMed] [Google Scholar]
  • Martínez L.E., Cavagnaro P.F., Masuelli R.W., Zúñiga M., 2006. SSR-based assessment of genetic diversity in South American Vitis vinifera varieties. Plant Sci., 170, 1036-1044. [CrossRef] [Google Scholar]
  • Merdinoglu D., Butterlin G., Bevilacqua L., Chiquet V., Adam Blondon A-F., Decroocq S., 2005. Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L) suitable for multiplex PCR. Mol. Breed. 15, 349-366. [CrossRef] [EDP Sciences] [Google Scholar]
  • Moncada X., Hinrichsen P., 2007. Limited genetic diversity among clones of red wine cultivar ‘Carmenere’ as revealed by microsatellite and AFLP markers. Vitis, 46, 174-180. [Google Scholar]
  • Moncada X., Pelsy F., Merdinoglu D., Hinrichsen P., 2006. Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers. Genome, 49, 1459-1472. [CrossRef] [PubMed] [Google Scholar]
  • Nei M., 1972. Genetic distance between populations. The American Naturalist, 106, 283-292. [CrossRef] [Google Scholar]
  • Nei M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583-590. [PubMed] [Google Scholar]
  • Oliveira-Collet S.A., Collet M.A., Machado M.F.P.S., 2005. Differential gene expression for isozymes in somatic mutants of Vitis vinifera L. (Vitaceae). Biochem. Syst. Ecol., 33, 691-703. [CrossRef] [Google Scholar]
  • Orasmo G.R., Oliveira-Collet S.A., Lapenta A.S., Machado M.F.P.S., 2007. Biochemical and genetic polymorphism for carboxylesterase and acetylesterase in grape clones of Vitis vinifera L. (Vitaceae) cultivars. Biochem. Genet., 45, 663-670. [CrossRef] [PubMed] [Google Scholar]
  • Orasmo G.R., Oliveira-Collet S.A., Mangolin C.A., Lapenta A.S., Machado M.F.P.S., 2015. Esterase isozymes patterns of grape vine (Vitis vinifera L.) are altered in response to fungicide exposure. Acta Scient. Biol. Sci., 37, 463-469. [CrossRef] [Google Scholar]
  • Pelsy F., 2010. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity, 104, 331–340. [CrossRef] [PubMed] [Google Scholar]
  • Pelsy F., Hocquigny S., Moncada X., Barbeau G., Forget D., Hinrichsen P., Merdinoglu D., 2010. An extensive study of the genetic diversity within seven French wine grape variety collections. Theor. Appl. Genet., 120, 1219-1231. [CrossRef] [PubMed] [Google Scholar]
  • Pires E.J.P., Sawazaki H.E., Terra M.M., Botelho R.V., Conagim A., Nogueira N.A.M., 2003. Redimeire: A natural mutation of cv. Italia in Brazil. Vitis, 42, 55-56. [Google Scholar]
  • Pollefeys P., Bousquet J., 2003. Molecular genetic diversity of the French-American grapevine hybrids cultivated in North America. Genome, 46, 1037-1048. [CrossRef] [PubMed] [Google Scholar]
  • R Development Core Team, 2013. R: A language and environment for statistics computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.org/. [Google Scholar]
  • Riahi L., Laucou V., Le Cunff L., Zoghlami N., Boursiquot J.M., Lacombe T., El-Heit K., Mliki A., This P., 2012. Highly polymorphic nSSR markers: A useful tool to assess origin of North African cultivars and to provide additional proofs of secondary grapevine domestication events. Sci. Hortic., 141, 53-60. [CrossRef] [Google Scholar]
  • Riaz S., Garisson K.E., Dangl G.S., Boursiquot J.M., Meredith C.P., 2002. Genetic divergence and chimerism within ancient asexually propagated wine grape cultivars. J. Am. Soc. Hortic. Sci., 127, 508-514. [Google Scholar]
  • Richter K.S., Kleinow T., Jeske H., 2014. Somatic homologous recombination in plants is promoted by a geminivirus in a tissueselective manner. Virology, 452-453, 287-296. [CrossRef] [PubMed] [Google Scholar]
  • Roberto S.R., Assis A.M., Genta W., Yamamoto L.Y., Sato A.J., 2012. ‘Black star’: Uma mutação somática natural da uva fina de mesa cv. Brasil. Rev. Brasil. Fruticult., 34, 947-950. [CrossRef] [Google Scholar]
  • Roberto S.R., Mashima C.H., Colombo, R.C., 2015. Phenological characterization and quality of fine ‘Black Star’ table grape. Agron. Sci. Biotechn., 1, 77-82. [Google Scholar]
  • Roberto S.R., Mashima C.H., Colombo R.C., Assis A.M., Koyama R., Yamamoto L.Y., Shahab M., Souza R.T., 2017. Berry-cluster thinning to reduce compactness of ‘Black Star’ table grapes. Ciência Rural, 47, 1-7. [CrossRef] [Google Scholar]
  • Schuermann D., Molinier J., Fritsch O., Barbara Hohn B., 2005. The dual nature of homologous recombination in plants. Trends Genet., 21, 172-181. [CrossRef] [PubMed] [Google Scholar]
  • Scott K.D., Eggler P., Seaton G., Rossetto M., Ablett E.M., Lee L.S., Henry R.J., 2000. Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet., 100, 723-726. [CrossRef] [Google Scholar]
  • Sefc K.M., Lopes M.S., Lefort F., Botta R., Roubelakis-Angelakis K.A., Ibanez J., Pejic I., Wagner H.W., Glössl J., Steinkellner H., 2000. Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet., 100, 498-505. [CrossRef] [Google Scholar]
  • Sefc K.M., Regner F., Turetschek E., Glössl J., Steinkellner H., 1999. Identification of microssatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome, 42, 367-373. [CrossRef] [PubMed] [Google Scholar]
  • Sneath P.H., Sokal R.R., 1973. Numerical taxonomy: The principles and practice of numerical classification. San Francisco: Freeman, 573 p. [Google Scholar]
  • Snoussi H., Harbi Ben Slimane M., Ruiz-García L., Martínez-Zapater J.M., Arroyo-García R., 2004. Genetic relationship among cultivated and wild grapevine accessions from Tunisia. Genome, 47, 1211-1219. [CrossRef] [PubMed] [Google Scholar]
  • Sousa J.S.I., 1996. Uvas para o Brasil. 791p. FEALQ, Piracicaba. [Google Scholar]
  • This P., Zapater J.M.M., Péros J-P., Lacombe T., 2011. Natural Variation in Vitis. In: Adam-Blondon A-F., Martinez-Zapater J-M., Kole C. (Eds.) Genetics, genomics and breeding of grapes, pp. 30-63. Science Publishers, USA. [CrossRef] [Google Scholar]
  • Thomas M.R., Cain P., Scott N.S., 1994. DNA typing of grapevines: a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol. Biol., 25, 939-949. [CrossRef] [PubMed] [Google Scholar]
  • Thomas M.R., Scott N.S., 1993. Microsatellites repeats in grapevine reveal DNA polymorphisms when analyzed as sequencetagged sites, STSs. Theor. Appl. Genet., 86, 985-990. [CrossRef] [PubMed] [Google Scholar]
  • Walker A.R., Lee E., Bogs J., McDavid D.A.J., Thomas M.R., Robinson S.P., 2007. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J., 49, 772-785. [CrossRef] [PubMed] [Google Scholar]
  • Yeh F.C., Yang R., Boyle T., 1999. Popgene Version 1.31: Microsoft Window based freeware for population genetic analysis: Quick user guide. University of Albert, Center for International Forestry. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.