Open Access
Issue
Ciência Téc. Vitiv.
Volume 33, Number 1, 2018
Page(s) 90 - 101
DOI https://doi.org/10.1051/ctv/20183301090
Published online 07 August 2018
  • Alleweldt G., Dettweiler-Münch E., 1994. The genetic resources of Vitis. world list of grapevine collections. Institut für Rebenzüchtung Geilweilerhof. 2nd edition. [Google Scholar]
  • Atak A., Akkurt M., Polat Z., Celik H., Kahraman K.A., Akgül D.S., Özer N., Söylemezoğlu G., Sire G., Eibach R., 2017. Susceptibility to downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necator) of different Vitis cultivars and genotypes. Ciência Téc. Vitiv., 32(1), 23–32. [Google Scholar]
  • Ben Salem-Fnayou A, Bouamama B, Ghorbel A, Mliki A., 2011 Investigations on the leaf anatomy and ultrastructure of grapevine (Vitis vinifera) under heat stress. Microsc. Res. Tech., 74(8), 756–62. [CrossRef] [PubMed] [Google Scholar]
  • Böhm J., 2007. Portugal vitícola. O grande livro das castas. Chaves Ferreira – Publicações S.A., Lisboa. 230 pp. [Google Scholar]
  • Bosabalidis A.M., Kofidis G., 2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Pl. Sc., 163, 375–379. [CrossRef] [Google Scholar]
  • Boso S., Allonso-Villaverde V., Gago P., Santiago B.J.L., Martínez M.C., 2011a Susceptibility of 44 grapevine (Vitis vinifera L.) cultivars to downy mildew in the field. Aust. J. Grape Wine Res., 17, 304–400. [CrossRef] [Google Scholar]
  • Boso S., Alonso-Villaverde V., Gago P., Santiago J.L., Martínez M.C., 2014 Susceptibility to downy mildew (Plasmopara viticola) of different Vitis cultivars. Crop Prot., 63, 26–35. [CrossRef] [Google Scholar]
  • Boso S., Allonso-Villaverde V., Santiago JL., Gago P., Durenberber M., Duggelin M., 2010. Macro and microscopic leaf characteristics of six grapevine genotypes (Vitis spp.) with different susceptibilities to grapevine downy mildew. Vitis, 49, 43–50. [Google Scholar]
  • Boso S., Gago P., Alonso-Villaverde V., Santiago J.J., Mendez J., Pazos I., Martínez M.C., 2011b. Variability at the electron microscopy level in leaves of members of the genus Vitis. Sci. Hort., 128, 228–238. [CrossRef] [Google Scholar]
  • Brewer C.A., Smith W.K., 1997. Patterns of leaf surface wetness for montane and subalpine plants. Plant Cell Environ., 20, 1–11. [CrossRef] [Google Scholar]
  • Carson S., Gray J.E., 2008. Influence of environmental factors on stomatal development. New Phytologist, 178, 9–23. [CrossRef] [Google Scholar]
  • Carvalho L.C., Vidigal P., Amâncio S., 2015. Oxidative stress homeostasis in grapevine (Vitis vinifera L.). Front. Environ. Sci., 3, 20. [CrossRef] [Google Scholar]
  • Costa J.M., Ortuño M.F., Lopes C.M., Chaves M.M., 2012. Grapevine cultivars exhibiting differences in stomatal response to water deficit. Funct. Pl. Biol., 39, 179–189. [CrossRef] [Google Scholar]
  • Denisov N.I., 1970. Anatomical and morphological study of Vitis amurensis. Sb. Tr. Asp., 17, 401–408. [Google Scholar]
  • Dickison W.C., 2000. Integrative plant anatomy. Harcourt Academic Press. San Diego. [Google Scholar]
  • Doheny-Adams T., Hunt L., Franks P.J., Beerling D.J., Gray J.E., 2012. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos. Trans. R. Soc. Lond. B Biol. Sci., 367 (1588), 547–555. [CrossRef] [PubMed] [Google Scholar]
  • Düring H., 1980. Stomata frequenz bei Blättern von Vitis-species und Sorten. Vitis, 19, 91–98. [Google Scholar]
  • Esau K., 1977. Anatomy of seed plants. 2nd ed. John Wiley & Sons, New York. [Google Scholar]
  • Eurostat, 2016. Agri-environmental indicator - consumption of pesticides. Eurostat statistics explains. http://ec.europa.eu/eurostat/statistics-explained/index.php/Agrienvironmental_indicator_-_consumption_of_pesticides [Google Scholar]
  • Flexas J., Scoffoni C., Gago J., Sack L., 2013. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J. Exp. Bot., 64 (13), 3965–3981. [CrossRef] [PubMed] [Google Scholar]
  • Grammatikopoulous G., Manetas Y., 1994. Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance. Can. J. Bot., 72, 1805–1811. [CrossRef] [Google Scholar]
  • Gómez-del-Campo M., Ruiz C., Baeza P., Lissarrague J.R., 2003. Drought adaptation strategies of four grapevine cultivars (Vitis vinifera L.): modification of the properties of the leaf area. J. Int. Sci. Vigne Vin, 37, 131–143. [Google Scholar]
  • Hayat M., 1981. Principles and techniques of electron microscopy. Biological Applications. 2nd ed. Ed. Arnold Publ. London. [Google Scholar]
  • He H., Veneklaas E.J., Kuo J., Lambers H., 2014. Physiological and ecological significance of biomineralization in plants. Trends Plant Sci., 19, 166–174. [CrossRef] [PubMed] [Google Scholar]
  • Hegedüs A., 1974. Study of the epidermis of vine leaves. Acta Bot Acad Sci Hung, 20, 225–270. [Google Scholar]
  • IFV, 2007 Catalogue des variétés et clones de vigne cultivés en France. Institute Français de la Vigne et du Vin, Ministère de l’Agriculture et da la Pêche – CTPS, 2ème edition. Montpellier, France. [Google Scholar]
  • IPCC, 2013: Climate change 2013: The physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. [Google Scholar]
  • IVV, 2017 Lista de castas. Instituto da Vinha e do Vinho, Ministério da Agricultura, Florestas e Desenvolvimento Rural. http://www.ivv.gov.pt/np4/111/, Accessed at 8 December 2017 [Google Scholar]
  • Jones H.G., 2014. Plants and microclimate: A quantitative approach to environmental plant physiology. Cap. 10, Drought and other abiotic stresses, p. 255-289. 3rd Ed., Cambridge University Press, Cambridge. [Google Scholar]
  • Karabourniotis G., Kotsabassidis D., Manetas Y., 1995. Trichome density and its protective potential against ultra- violet-B radiation damage during leaf development. Can. J. Bot., 73, 376–383. [CrossRef] [Google Scholar]
  • Keller M., 2010. The science of grapevines. Anatomy and physiology. Academic Press/Elsevier. 1st edition, Burlington, MA. 377 p. [Google Scholar]
  • Lleras E., 1997. Differences in stomatal number per unit area within the same species under different micro-environmental conditions: a working hypothesis. Acta Amaz., 7, 473–476. [CrossRef] [Google Scholar]
  • Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A., 2010. Drought-induces changes in development and function of grapevine (Vitis spp.) organs and their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Funct. Plant Biol., 37, 98–116. [CrossRef] [Google Scholar]
  • Martin T.J., Juniper, B.E. 1970. The cuticles of plants. Edward Arnold, London, 347 pp. [Google Scholar]
  • Medri M.E., Lleras E., 1980. Aspectos da anatomia ecológica de folhas de Hevea brasiliensis Müell. Arg. Acta Amaz., 10, 463–493. [CrossRef] [Google Scholar]
  • Metcalfe C., Chalk L., 1979. Anatomy of Dicotyledons, Vol I. 2nd ed. Oxford Univ. Press. [Google Scholar]
  • Monteiro A., Teixeira G., Lopes C., 2013. Comparative leaf micromorphoanatomy of Vitis vinifera ssp. vinifera (Vitaceae) red cultivars. Ciência Tec. Vitiv., 28, 19–28. [Google Scholar]
  • Montoro A., López-Urrea R., Fereres E., 2016. Role of stomata density in the water use of grapevines. Acta Hort., 1115, 41–47. [CrossRef] [Google Scholar]
  • Mott K., Gibson A., O'Leary J., 1982. The adaptive significance of amphistomatic leaves. Plant Cell Environ., 5, 455–460. [CrossRef] [Google Scholar]
  • Nakata P., 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci., 164, 901–909. [CrossRef] [Google Scholar]
  • Niinemets Ü., 1999. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Physiologist, 144, 35–47. [CrossRef] [Google Scholar]
  • Niinemets Ü., Wright I.J., Evans J.R., 2009. Leaf mesophyll diffusion condutance in 35 Australian sclerohpylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot., 60, 2433–2449. [CrossRef] [PubMed] [Google Scholar]
  • Palliotti A., Tombesi S., Frioni T., Famiani F., Silvestroni O., Zamboni M., Poni S., 2014 Morpho-structural and physiological response of container-grown Sangiovese and Montepulciano cv. (Vitis vinifera) to re-watering after a pre-veraison limiting water deficit. Funct. Plant Biol., 41(6), 634–647. [CrossRef] [PubMed] [Google Scholar]
  • Parkhurst D.F., 1978. Adaptive significance of stomatal occurrence on one or both surfaces of leaves. J. Ecology, 66, 367–383. [CrossRef] [Google Scholar]
  • Patakas A., Kofidis G., Bosabalidis A.M., 2003. The relationships between CO2 transfer mesophyll resistance and photosynthetic efficiency in grapevine cultivars. Sc. Hort., 97, 255–263. [CrossRef] [Google Scholar]
  • Periyanayagam K., Kasirajan B., Karthikayan V., Gracelet R.J., Kumuda T., 2013. Quality assessment profile of the leaves of Vitis vinifera L. (Vitaceae). An important phytotherapy component of tropical diseases control. Innovare Journal of Health Sciences, 1, 26–31. [Google Scholar]
  • Pertot I., Caffi T., Rossi V., Mugnai L., Hoffmann C., Grando M.S., Gary C., Lafond D., Duso C., Thiery D., Mazzoni V., Anfora G., 2016. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot., 1–15. [PubMed] [Google Scholar]
  • Pratt C., 1974. Vegetative anatomy of cultivated grapes – a review. Am. J. Enol. Vitic., 25, 131–150. [Google Scholar]
  • Prychid C., Rudall P., 1999. Calcium oxalate crystals in Monocotyledons: A review of their structure and systematic. Ann. Bot., 84, 725–739. [CrossRef] [Google Scholar]
  • Ruzin S.E., 1999. Plant microtechnique and microscopy. Oxford University Press. 322 p. [Google Scholar]
  • Sadras V.O., Montoro A., Morana M.A., Aphaloc P.J., 2012. Elevated temperature altered the reaction norms of stomatal conductance in field-grown grapevine. Agr. For. Meteorol., 165, 35–42. [CrossRef] [Google Scholar]
  • Salisbury E.J., 1927. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philosophical Transactions of the Royal Society of London, Series B 216, 1–65. [Google Scholar]
  • Santa Maria F.C.S., Marcide J.M.O., Organero, G.M., Torres, I.R., Barba, A.B., Rubio de Miguel C., Muñoz S.C., Sáiz R.S., 2011. Variedades de vid en España. Instituto Madrileño de Investigación y Desarrollo, Agrario y Alimentario. Editorial Agricola Española, S.A. Madrid. 489 pp. [Google Scholar]
  • Serra I., Strever A., Myburgh P., Schmeisser M., Deloire P.A., 2017. Grapevine (Vitis vinifera L. ‘Pinotage’) leaf stomatal size and density as modulated by different rootstocks and scion water status. Acta Hort., 1157, 177–181. [CrossRef] [Google Scholar]
  • Soejima A., Wen J., 2006. Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplasts markers. Am. J. Bot., 93, 278–287. [CrossRef] [PubMed] [Google Scholar]
  • Swanepoel J.J., Villiers C.E., 1987. A numerical-taxonomic classification of Vitis spp. and cultivars based on leaf characteristics. S. Afr. J. Enol. Vitic., 8, 31–35. [Google Scholar]
  • Terashima I., Hanba Y.T., Tholen D., Niinemets U., 2011. Leaf functional anatomy in relation to photosynthesis. Pl. Physiol., 155, 108–116. [CrossRef] [Google Scholar]
  • This P., Lacombe T., Thomas M.R., 2006. Historical origins and genetic diversity of wine grapes. Trends Genet., 22 (9), 511–519. [CrossRef] [PubMed] [Google Scholar]
  • Tomás M., Flexas J., Copolovici L., Galmés J., Hallik L. Medrano H., Ribas-Carbó M., Tosens T., Vislap V., Niinemets Ü., 2013. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J. Exp. Bot., 64 (8), 2269–2281. [CrossRef] [PubMed] [Google Scholar]
  • Tomás M., Medrano H., Pou A., Escalona J.M., Martorell S., Ribas-Carbó M., Flexas, J., 2012. Water use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level. Aust. J. Grape. Wine. Res., 18 (2), 164–172. [CrossRef] [Google Scholar]
  • Tombesi S., Nardini A., Farinelli D., Palliotti A., 2014 Relationship between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Physiol. Plant., 152, 453–464. [CrossRef] [PubMed] [Google Scholar]
  • Tooulakou G., Giannopoulos A., Nikolopoulos D., Bresta P., Dotsika E., Orkoula M.G., Kontoyannis C.G., Fasseas C., Liakopoulos G., Klapa M.I, Karabourniotis G., 2016. Alarm photosynthesis: calcium oxalate crystals as an Internal CO2 source in plants. Plt. Physiol., 171, 2577–2585. [Google Scholar]
  • Wilkinson H.P., 1979. The plant surface (Mainly Leaf). Part I: Stomata. In: Anatomy of Dicotyledons. Vol I. 98–117. 2nd ed. Oxford Univ. Press. [Google Scholar]
  • Woodward F.I., Kelly C.K., 1995. The influence of CO2 concentration on stomatal density. New Phytologist, 131, 311–327. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.