Open Access
Issue
Ciência Téc. Vitiv.
Volume 32, Number 1, 2017
Page(s) 62 - 71
DOI https://doi.org/10.1051/ctv/20173201062
Published online 09 August 2017
  • Alonso A.D., Northcote J., 2010. Small winery operators and business vision: A western Australian case. J. Wine Res., 21, 19–34. [CrossRef]
  • Barbaresi A., Torreggiani D., Benni S., Tassinari P., 2014. Underground cellar thermal simulation: Definition of a method for modelling performance assessment based on experimental calibration. Energ. Buildings, 76, 363–372. [CrossRef]
  • Benni S., Torreggiani D., Barbaresi A., Tassinari P., 2013. Thermal performance assessment for energy-efficient design of farm wineries. T. ASABE, 56, 1483–1491.
  • Canas I., Mazarrón F.R., 2009. The effect of traditional wind vents called zarceras on the hygrothermal behaviour of underground wine cellars in Spain. Build. Environ., 44, 1818–1826. [CrossRef]
  • CEEV, 2014. Comité Européen des Entreprises Vins. About the EU wine sector, 2014, from http://www.ceev.eu/about-the-eu-wine-sector
  • Celorrio R., Blanco J., Martínez E., Jiménez E., Sáenz-Diez J.C., 2016. Determination of energy savings in alcoholic wine fermentation According to the IPMVP protocol. Am. J. Enol. Vitic., 67, 94–104. [CrossRef]
  • Celorrio R., Martínez E., Sáenz-Diez J.C., Jiménez E., Blanco J., 2015. Methodology to decrease the energy demands in wine production using cold pre-fermentation. Comput. Electron. Agr., 117, 177–185. [CrossRef]
  • CO2OP Project, 2011. Handbook of energy efficiency in wineries, 2011, from http://chil.es/agroindustria/group/eficienciaenergetica/document/manual-de-eficiencia-energetica-en-bodegas
  • Cyr D., Kushner J., Ogwang T., 2012. The size distribution of California's north coast wineries: 1984-2009. Int. J. Wine Bus. Res., 24, 6–18. [CrossRef]
  • Forbes S.L., De Silva T.A., 2012. Analysis of environmental management systems in New Zealand wineries. Int. J. Wine Bus. Res., 24, 98–114. [CrossRef]
  • Fuentes-Pila J., García J.L., 2014. Handbook: Efficient wineries TESLA project deliverable D.6.6: European Commission. http://teslaproject.chil.org/download-doc/62556
  • Gaspar P.D., Silva P.D., Nunes J., Andrade L.P., 2014. Characterization of the specific electrical energy consumption of agrifood industries in the Central Region of Portugal. Appl. Mech. Mater., 590, 878–882. [CrossRef]
  • Hejiang S., Qingxia Y., 2014. Influence of infiltration on energy consumption of a winery building. Front. Energy, 8, 110–118. [CrossRef]
  • Iannone R., Miranda S., Riemma S., De Marco, I., 2016. Improving environmental performances in wine production by a life cycle assessment analysis. J .Clean. Prod., 111, 172–180. [CrossRef]
  • Lijun W., 2014. Energy efficiency technologies for sustainable food processing. Energ. Effic., 7, 791–810. [CrossRef]
  • Martinodotnez C.I.P., 2010. Analysis of energy efficiency development in the German and Colombian food industries. Int. J. Energ. Sec. Manage., 4, 113–136. [CrossRef]
  • Mazarrón F.R., Canas I., 2008. Exponential sinusoidal model for predicting temperature inside underground wine cellars from a Spanish region. Energ. Buildings, 40, 1931–1940. [CrossRef]
  • Mazarrón F.R., Canas I., 2009. Seasonal analysis of the thermal behaviour of traditional underground wine cellars in Spain. Renew. Energ., 34, 2484–2492. [CrossRef]
  • Mazarrón F.R., Cid-Falceto J., Canas I., 2012b. Ground Thermal Inertia for Energy Efficient Building Design: A Case Study on Food Industry. Energies, 5, 227–242. [CrossRef]
  • Mazarrón F.R., Cid-Falceto J., Canas-Guerrero I., 2012a. Assessment of aboveground winery buildings for the aging and conservation of wine. Appl. Eng. in Agric., 28, 903–910. [CrossRef]
  • Mazarrón F.R., Lopez-Ocon E., Garcimartín M.A., Canas I., 2013. Assessment of basement constructions in the winery industry. Tunn. Undergr. Sp. Tech., 35, 200–206. [CrossRef]
  • Miah J.H., Griffiths A., McNeill R., Poonaji I., Martin R., Morse S., Sadhukhan J., 2015. A small-scale transdisciplinary process to maximising the energy efficiency of food factories: insights and recommendations from the development of a novel heat integration framework. Sustain. Sci., 10, 621–637. [CrossRef]
  • Neves P.L., Lebres C., Botelho G., Fonseca Ferreira N.M., 2013. Prototype to control alcoholic fermentation temperature in winemaking. Ciência Tec. Vitiv., 28, 71–76.
  • Point E., Tyedmers P., Naugler C., 2012. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J. Clean. Prod., 27, 11–20. [CrossRef]
  • Pomarici E., Vecchio R., Mariani A., 2015. Wineries' Perception of Sustainability Costs and Benefits: An exploratory study in California. Sustainability, 7, 16164–16174. [CrossRef]
  • Rodríguez-González O., Buckow R., Koutchma T., Balasubramaniam V.M., 2015. Energy requirements for alternative food processing technologies-principles, assumptions, and evaluation of efficiency. Compr. Rev. Food Sci. F., 14, 536–554. [CrossRef]
  • Sellers-Rubio R., 2010. Evaluating the economic performance of Spanish wineries. Int. J. Wine Bus. Res., 22, 73–84. [CrossRef]
  • Simon-Elorz K., Castillo-Valero J.S., García-Cortijo M.C., 2015. Economic performance and the crisis: Strategies adopted by the wineries of Castilla-La Mancha (Spain). Agribusiness, 31, 107–131. [CrossRef]
  • Smyth M., Russell J., 2009. 'From graft to bottle'-Analysis of energy use in viticulture and wine production and the potential for solar renewable technologies. Renew. Sust. Energ. Rev., 13, 1985–1993. [CrossRef]
  • TESLA project, Technical University of Madrid, 2014. Current process description: Wineries. European Commission, Intelligent energy Europe program. http://teslaproject.chil.me/downloaddoc/63247
  • TESLA project, Agro-food Cooperatives of Spain., 2015. Transfering Energy Save Laid on Agroindustry. European Commission, Intelligent Energy Europe Program. https://ec.europa.eu/energy/intelligent/projects/en/projects/tesla
  • Tinti F., Barbaresi A., Benni S., Torreggiani D., Bruno R., Tassinari P., 2014. Experimental analysis of shallow underground temperature for the assessment of energy efficiency potential of underground wine cellars. Energ. Buildings, 80, 451–460. [CrossRef]
  • Tinti F., Barbaresi A., Benni S., Torreggiani D., Bruno R., Tassinari P., 2015. Experimental analysis of thermal interaction between wine cellar and underground. Energ. Buildings, 104, 275–286. [CrossRef]
  • Torreggiani D., Benni S., García A.I., Ayuga F., Tassinari P., 2014. Farm winery layout design: size analysis of base spatial units in an italian study area. T. ASABE, 57, 625–633.
  • Wei W., Mingxing H., Ceyue L., Yuan Z., 2014. The research of constant temperature and humidity air-conditioning system of underground cellar. Appl. Mech.. Mater., 672-674, 1722–1728. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.