Open Access
Ciência Téc. Vitiv.
Volume 32, Number 1, 2017
Page(s) 62 - 71
Published online 09 August 2017
  • Alonso A.D., Northcote J., 2010. Small winery operators and business vision: A western Australian case. J. Wine Res., 21, 19–34. [CrossRef] [Google Scholar]
  • Barbaresi A., Torreggiani D., Benni S., Tassinari P., 2014. Underground cellar thermal simulation: Definition of a method for modelling performance assessment based on experimental calibration. Energ. Buildings, 76, 363–372. [CrossRef] [Google Scholar]
  • Benni S., Torreggiani D., Barbaresi A., Tassinari P., 2013. Thermal performance assessment for energy-efficient design of farm wineries. T. ASABE, 56, 1483–1491. [Google Scholar]
  • Canas I., Mazarrón F.R., 2009. The effect of traditional wind vents called zarceras on the hygrothermal behaviour of underground wine cellars in Spain. Build. Environ., 44, 1818–1826. [CrossRef] [Google Scholar]
  • CEEV, 2014. Comité Européen des Entreprises Vins. About the EU wine sector, 2014, from [Google Scholar]
  • Celorrio R., Blanco J., Martínez E., Jiménez E., Sáenz-Diez J.C., 2016. Determination of energy savings in alcoholic wine fermentation According to the IPMVP protocol. Am. J. Enol. Vitic., 67, 94–104. [CrossRef] [Google Scholar]
  • Celorrio R., Martínez E., Sáenz-Diez J.C., Jiménez E., Blanco J., 2015. Methodology to decrease the energy demands in wine production using cold pre-fermentation. Comput. Electron. Agr., 117, 177–185. [CrossRef] [Google Scholar]
  • CO2OP Project, 2011. Handbook of energy efficiency in wineries, 2011, from [Google Scholar]
  • Cyr D., Kushner J., Ogwang T., 2012. The size distribution of California's north coast wineries: 1984-2009. Int. J. Wine Bus. Res., 24, 6–18. [CrossRef] [Google Scholar]
  • Forbes S.L., De Silva T.A., 2012. Analysis of environmental management systems in New Zealand wineries. Int. J. Wine Bus. Res., 24, 98–114. [CrossRef] [Google Scholar]
  • Fuentes-Pila J., García J.L., 2014. Handbook: Efficient wineries TESLA project deliverable D.6.6: European Commission. [Google Scholar]
  • Gaspar P.D., Silva P.D., Nunes J., Andrade L.P., 2014. Characterization of the specific electrical energy consumption of agrifood industries in the Central Region of Portugal. Appl. Mech. Mater., 590, 878–882. [CrossRef] [Google Scholar]
  • Hejiang S., Qingxia Y., 2014. Influence of infiltration on energy consumption of a winery building. Front. Energy, 8, 110–118. [CrossRef] [Google Scholar]
  • Iannone R., Miranda S., Riemma S., De Marco, I., 2016. Improving environmental performances in wine production by a life cycle assessment analysis. J .Clean. Prod., 111, 172–180. [CrossRef] [Google Scholar]
  • Lijun W., 2014. Energy efficiency technologies for sustainable food processing. Energ. Effic., 7, 791–810. [CrossRef] [Google Scholar]
  • Martinodotnez C.I.P., 2010. Analysis of energy efficiency development in the German and Colombian food industries. Int. J. Energ. Sec. Manage., 4, 113–136. [CrossRef] [Google Scholar]
  • Mazarrón F.R., Canas I., 2008. Exponential sinusoidal model for predicting temperature inside underground wine cellars from a Spanish region. Energ. Buildings, 40, 1931–1940. [CrossRef] [Google Scholar]
  • Mazarrón F.R., Canas I., 2009. Seasonal analysis of the thermal behaviour of traditional underground wine cellars in Spain. Renew. Energ., 34, 2484–2492. [CrossRef] [Google Scholar]
  • Mazarrón F.R., Cid-Falceto J., Canas I., 2012b. Ground Thermal Inertia for Energy Efficient Building Design: A Case Study on Food Industry. Energies, 5, 227–242. [CrossRef] [Google Scholar]
  • Mazarrón F.R., Cid-Falceto J., Canas-Guerrero I., 2012a. Assessment of aboveground winery buildings for the aging and conservation of wine. Appl. Eng. in Agric., 28, 903–910. [CrossRef] [Google Scholar]
  • Mazarrón F.R., Lopez-Ocon E., Garcimartín M.A., Canas I., 2013. Assessment of basement constructions in the winery industry. Tunn. Undergr. Sp. Tech., 35, 200–206. [CrossRef] [Google Scholar]
  • Miah J.H., Griffiths A., McNeill R., Poonaji I., Martin R., Morse S., Sadhukhan J., 2015. A small-scale transdisciplinary process to maximising the energy efficiency of food factories: insights and recommendations from the development of a novel heat integration framework. Sustain. Sci., 10, 621–637. [CrossRef] [Google Scholar]
  • Neves P.L., Lebres C., Botelho G., Fonseca Ferreira N.M., 2013. Prototype to control alcoholic fermentation temperature in winemaking. Ciência Tec. Vitiv., 28, 71–76. [Google Scholar]
  • Point E., Tyedmers P., Naugler C., 2012. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J. Clean. Prod., 27, 11–20. [Google Scholar]
  • Pomarici E., Vecchio R., Mariani A., 2015. Wineries' Perception of Sustainability Costs and Benefits: An exploratory study in California. Sustainability, 7, 16164–16174. [CrossRef] [Google Scholar]
  • Rodríguez-González O., Buckow R., Koutchma T., Balasubramaniam V.M., 2015. Energy requirements for alternative food processing technologies-principles, assumptions, and evaluation of efficiency. Compr. Rev. Food Sci. F., 14, 536–554. [CrossRef] [Google Scholar]
  • Sellers-Rubio R., 2010. Evaluating the economic performance of Spanish wineries. Int. J. Wine Bus. Res., 22, 73–84. [CrossRef] [Google Scholar]
  • Simon-Elorz K., Castillo-Valero J.S., García-Cortijo M.C., 2015. Economic performance and the crisis: Strategies adopted by the wineries of Castilla-La Mancha (Spain). Agribusiness, 31, 107–131. [CrossRef] [Google Scholar]
  • Smyth M., Russell J., 2009. 'From graft to bottle'-Analysis of energy use in viticulture and wine production and the potential for solar renewable technologies. Renew. Sust. Energ. Rev., 13, 1985–1993. [CrossRef] [Google Scholar]
  • TESLA project, Technical University of Madrid, 2014. Current process description: Wineries. European Commission, Intelligent energy Europe program. [Google Scholar]
  • TESLA project, Agro-food Cooperatives of Spain., 2015. Transfering Energy Save Laid on Agroindustry. European Commission, Intelligent Energy Europe Program. [Google Scholar]
  • Tinti F., Barbaresi A., Benni S., Torreggiani D., Bruno R., Tassinari P., 2014. Experimental analysis of shallow underground temperature for the assessment of energy efficiency potential of underground wine cellars. Energ. Buildings, 80, 451–460. [CrossRef] [Google Scholar]
  • Tinti F., Barbaresi A., Benni S., Torreggiani D., Bruno R., Tassinari P., 2015. Experimental analysis of thermal interaction between wine cellar and underground. Energ. Buildings, 104, 275–286. [CrossRef] [Google Scholar]
  • Torreggiani D., Benni S., García A.I., Ayuga F., Tassinari P., 2014. Farm winery layout design: size analysis of base spatial units in an italian study area. T. ASABE, 57, 625–633. [Google Scholar]
  • Wei W., Mingxing H., Ceyue L., Yuan Z., 2014. The research of constant temperature and humidity air-conditioning system of underground cellar. Appl. Mech.. Mater., 672-674, 1722–1728. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.